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Outline:

• Non-linear systems of (ordinary) differential equations and their chaotic behav-
ior in Hamiltonian and dissipative systems (eigenvalues of the Jacobi matrix,
Lyapunov exponents)

• Bifurcations and attracting sets: point sets, periodic orbits, tori, strange at-
tractors

• Parameters in mantle convection models

• Bifurcations of stationary solutions, periodic orbits and route to
chaos in simple convection systems

• Spectra of time series observed in chaotic systems

• Fractal dimensions of attractors as a measure of chaoticity



Geophysical motivation I:
Rays as the example of a conservative system

The propagation of rays can be described by means of the Hamilton canonical
equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(1)

in six-dimensional phase-space, where the Hamiltonian is equal to half of the eigenval-
ue of the Christoffel matrix. The phase-space coordinates are formed by generalized
coordinates and the slowness vector components.

Local geometrical aspects of ray propagation can be studied by means of the
eigenvalues of the Jacobi matrix for a fixed propagation time and global geometrical
aspects of ray propagation for long times can be studied by means of the analyses of
the propagator matrix—namely the Lyapunov exponents.



Ia. Local exponential behavior of rays

Consider a general Hamiltonian ray tracing system written formally,

dwi
dt

= Fi(w) , i = 1, 2, . . . , N , (2)

whereN = 6 (N = 4) for 3-D (2-D) problems and wi are the phase-space coordinates.
The ray tracing system (2) is Hamiltonian and thus it preserves phase-space
volume during time evolution (Liouville’s theorem).

Let w(t; w0) is the ray satisfying (2) and the initial condition w = w0 at t = 0.
We are interested in the behavior of rays in the neighbourhood of a selected ray
w(t; w0). In a smooth medium Fi are continuously differentiable; after employing
the Taylor expansion and Einstein’s summation rule, we may rewrite the system (2)
into

d

dt
(wi + δwi)

.
= Fi(w) +

∂Fi
∂wj

∣∣∣∣
w

δwj . (3)

Eqn. (2) then immediately yields

d

dt
δwi

.
=
∂Fi
∂wj

∣∣∣∣
w

δwj . (4)



As Fi are smooth, we can write for a selected ray w(t; w0) and a fixed time τ

∂Fi
∂wj

∣∣∣∣
w(t;w0)

=
∂Fi
∂wj

∣∣∣∣
w(τ ;w0)

for t→ τ , (5)

and the solution of (4) for t→ τ is

δw(t)
.
= exp[(t− τ )DF (w(τ ; w0))] · δw(τ ) , (6)

where the Jacobi matrix DF and exp(DF ) are

(DF )ij(w) =
∂Fi
∂wj

∣∣∣∣
w

, exp(tDF ) =

∞∑
n=0

1

n!
(tDF )n . (7)

To construct N independent solutions of the studied linearized system we deter-
mine eigenvalues λ and eigenvectors e of the matrix DF . Eigenvalues and eigenvec-
tors are introduced by the relation

(DF − λI)e = 0 , (8)

where I is the identity matrix. In general, the Jacobi matrix is not symmetric and
thus both eigenvalues and eigenvectors can be complex.



IfDF hasN linearly independent eigenvectors ej, j = 1, 2, . . . , N , then the inde-
pendent solutions of (4) are simply exp(αjt)ej, where αj is an eigenvalue correspond-
ing to ej. If we have a pair of complex conjugate eigenvalues αj, αj+1 with the cor-
responding complex eigenvectors, a pair exp(<αjt)[cos(=αjt)<ej − sin(=αjt)=ej],
exp(<αjt)[sin(=αjt)<ej + cos(=αjt)=ej] represents linearly independent real solu-
tions. Here < denotes real and = imaginary part of the complex numbers.



First summary:

The time dependence of rays in the neighbourhood of a selected ray at a particular
time t = τ can thus be exponential. This local behavior is controlled by the real parts
of the eigenvalues of the Jacobi matrix. If there are no multiple eigenvalues,
the phase-space EN is divided into the three linearly independent subspaces, Es,
Eu and Ec, where the stable subspace Es is spanned by the eigenvectors whose
eigenvalues have negative real parts, the unstable subspace Eu is spanned by the
eigenvectors whose eigenvalues have positive real parts and the center subspace Ec

is spanned by the eigenvectors whose eigenvalues have zero real parts. Each of the
subspaces is invariant under the time evolution of the linearized system (4), (5), i.e.,
the solutions lying in Es are characterized by exponential decay, those lying in Eu

by exponential growth, and those lying in Ec by neither of these cases (see also
Guckenheimer and Holmes, 1983). This analysis is, however, valid only for a
short-time evolution of rays near a selected phase-space point.



Ib. Global chaotic behavior of rays

The real parts of eigenvalues <αj are given by the inverse of a time unit, which
means that they do not depend on a spatial unit chosen to describe a studied ray
tracing model. Since the ray tracing system preserves phase-space volume during
time evolution either Ec = EN or both Es and Eu have positive dimensions. Let
us number the eigenvalues αj so that αN is the eigenvalue with the largest real
part. Then (<αN)−1 represents the local characteristic time of predictability of
ray behavior.

The exponential amplification of small perturbations δwi can result in a sensitive
dependence on initial conditions for long times. However, the Jacobi matrix DF

can change along rays, i.e., DF is a function of time for a selected ray w(t; w0) and
thus such a global instability need not occur under the presence of local instabilities.

Suppose now that we deal with a model with both geometrically smooth interfaces
and smooth material properties outside the interfaces so that w(t; w0) smoothly
depends on w0. Employing again the Taylor expansion and Einstein’s summation
rule, we may write

wi(t; w
0 + δw0)

.
= wi(t; w

0) +
∂wi
∂w0

j

(t; w0)δw0
j , (9)



where

Πij(t; w
0) ≡ ∂wi

∂w0
j

(t; w0) (10)

is the propagator matrix of a selected ray. The expansion (9) can be rewritten into
the form

δw(t; w0; δw0)
.
= Π(t; w0) · δw0 . (11)

The propagator matrix can thus be used to analyze the chaoticity of rays due to
both a spatial-dependence of material properties outside the interfaces and undula-
tions of the interfaces. Both these effects can lead to an exponential divergences of
rays in the phase-space, which can be globally described by means of the exponents
formally corresponding to the eigenvalues of the Jacobi matrix DF in the cases with
constant DF along a ray.

Definition (see also Lanford, 1981): The point w0 has the Lyapunov (or
characteristic) exponents λ1 < λ2 < . . . < λN if there exist subspaces E1 ⊂
E2 ⊂ . . . ⊂ EN , with each Ek of dimension k, such that

Ek =

{
u ∈ EN ; lim sup

t→∞

1

t
ln ||Π(t; w0) u|| ≤ λk

}
(12)

and

lim sup
t→∞

1

t
ln ||Π(t; w0) u|| = λk if u ∈ Ek but u 6∈ Ek−1 . (13)



Numerical evaluation of Lyapunov exponents

There is a problem in numerical computations that the components of the phase-
space represent different physical quantities (generalized coordinates and generalized
slowness vector components). Although the above definition of the Lyapunov expo-
nents does not depend on the scaling of wi, we are not able to operate with infinitely
long time-series. Finite-time guesses of the Lyapunov exponents are then dependent
on a choice of the scalar product generating the employed norm.

The largest Lyapunov exponent can be numerically computed by a random choice
of u in the expression t−1 ln ||Π(t; w0) u|| (see Keers et al., 1997). Since the sub-
space (12) corresponding to λN is the basic space EN , there is zero probability that
randomly chosen u is from the (N − 1)-dimensional space EN−1. Hence, (13) is
satisfied for k = N . However, in practical applications we can only estimate λN on a
finite-time interval. It is, therefore, useful to estimate t−1 ln ||Π(t; w0) u|| for several
randomly chosen u with unit modulus under the selected norm.

Remark

We may also try to find the Lyapunov exponents λk as the limits

λk = lim sup
t→∞

1

t
ln |σk(t)| , (14)



where σk(t) are the eigenvalues of the propagator matrix, or even in a simplified
version of (14), where lim supt→∞ is replaced by only limt→∞. However, in dynamic
ray tracing models (1/t) ln |σk(t)| can be a function oscillating over a finite interval
(Klimeš, personal communication). Hence we deal with the limiting behavior of an
upper envelope of (1/t) ln |σk(t)|.

Correlations

Definition: Correlation matrix of phase-space velocities C(τ ; w0) has the ele-
ments

Cij(τ ; w0) = lim
T→∞

1

T

 T∫
0

Fi(w(t; w0))Fj(w(t + τ ; w0)) dt

− 1

T

T∫
0

Fi(w(t; w0)) dt

T∫
0

Fj(w(t + τ ; w0)) dt .

 (15)

In many chaotic systems |Cij| decay exponentially with the time-shift τ . The decay
coefficient can be then viewed similarly as the Lyapunov exponent—its inverse is
the characteristic time of predictability of the orbit behavior near the selected orbit
w(t; w0).



Second summary:

The Lyapunov exponents represent the rate of exponential growth or damp-
ing of infinitesimal displacements for t → ∞, i.e., the inverse of the largest positive
Lyapunov exponent gives the global characteristic time of predictability of ray be-
havior near a selected ray, i.e., the Lyapunov exponents are the quantities associated
with a particular ray w = w0 at t = t0. This is the reason why a simple quantifi-
cation of a whole model by, e.g., the largest Lyapunov exponent found, may result
in a deep misunderstanding of the basic physics of the model because we thus ob-
tain the characteristic time of predictability of ray propagation near only the ray
corresponding to this exponent.



The Poincaré sections

The Poincaré sections represent a tool enabling to transfer original dynamic sys-
tem to iterative maps. Let S be an (N − 1)-dimensional surface “transverse” to the
trajectories of a dynamical system. Let x0 be a point on S at time t0; for any point
x0, where the trajectory starting at x0 returns to S after certain time intervals, we
obtain a mapping

w1 = P (w0) , w2 = P (w1) , ... wn = P (wn−1) ... . (16)

The mapping P is called the return map or the Poincaré map of the dynamical
system and the chaotic properties of the original system can be studied by means of
such a map.



“Interface” iterative maps and rays

In ray propagation, an additional effect to that caused by smoothly heterogeneous
media is the effect of undulating interfaces. In such a case it is possible to restrict
the attention to the values of phase-space coordinates of a selected ray at instants
of its incidence on chosen interfaces. In other words, these incidences define again a
discrete map

w(i+1) = G(w(i)) . (17)

Let us confine our considerations only to the special problems when we study the
repeated incidence of a ray on the same interface. Then we can redefine the phase-
space coordinates since the location of the selected interface in the real space can be
parameterized by means of some parameters sj, j = 1, ..., N/2− 1 and the incidence
of a ray by the angles sj, j = N/2, ..., N − 2 and

w(i) = w(i)(s). (18)

This relation describes a parametrization of a cross-section in the original phase-space.
On this section we have a map

s
(i+1)
j = Gj(s

(i)
1 , . . . , s

(i)
N−2) . (19)



A sequence of points {s(i)}∞i=−∞ in EN−2 is then called an orbit. Each interface
with infinitely repeated incidences of the ray represents the special case of Poincaré
sections. Chaotic behavior of rays can be visualized by drawing orbits in such a
cross-section of the original phase-space. F1 - vlnovod a biliár

The Lyapunov exponents associated with a selected orbit can be defined by
only a slight change of the previous definition for continuous time: the time t is
replaced by the number of iteration i and the propagator matrix Π(t; w0) is replaced
by the Jacobi matrix Di

G(s(0)) of the i-th iteration of the procedure starting at
s = s(0). It is clear that Di

G(s(0)) = DG(s(i−1))DG(s(i−2)) . . .DG(s(0)), where
DG(sj)kl = ∂Gk(s

j)/∂sl.

Visualization of orbits on such a Poincaré section can sometimes distinctly sep-
arate regions with chaotic and regular behavior without any quantification.



Geophysical motivation II:
Thermal convection as the example of

a dissipative chaotic system

Consider a system written formally in the same way,

dwi
dt

= Fi(w) , i = 1, 2, . . . , N . (20)

However, N → ∞ now because (20) arises from discretization of a problem of
continuum (thermo)mechanics.

Denote again w(t,w0) the solution (orbit) of (20) satisfying w = w0 at t = 0.
The description of dynamical system by means of orbits can be viewed as an analog
of Lagrangian description of particle motions in continuum mechanics and dw/dt is
thus an analog of a velocity field (for N � 1 instead of N = 2 or N = 3). Choose a
phase-space volume V (t) in any time t, then

dV

dt
=

∫
V (t)

∇ · dw
dt

dV . (21)

In dissipative systems ∇ · w � 0 and the space-phase volume is shrinking in (al-
most) all directions during evolution; nevertheless, there may exist positive Lyapunov
exponents and thus close orbits may exponentially diverge in several directions.



Attracting sets and attractors

The set A is called an attracting set with fundamental neighbourhood U , if:

• for every open set V : A ⊂ V there exists time t0 such that orbits
w(t > t0,w

0) ∈ V ∀ w0 ∈ U (attractivity)

• w(t,w0) ∈ A ∀ w0 ∈ A (invariance)

Usually some kind of irreducibility is required so that A may be called an attractor.
Note: two orbits lying in A may (locally) exponentially diverge. F2 - atrahujici mnozina

Examples of attractors (and saddles and repellors)

Stationary points ws are solutions of the equation F(ws) = 0.
Periodic solutions wp(t) satisfy the relation wp(t) = wp(t+ T ) for some period T .
Torus is created if there are at least two periods T1 and T2 such that T2/T1 is an
irrational number.
Strange attractors have non-integer (fractal) dimension which is usually low for real
physical systems (only several degrees of freedom!).



Figure 1: Stable periodic attractor (van der Pol equation: y
′′ − µ(1− y2)y

′
+ y = 0)

and torus.



Local stability analysis
of an orbit can be again performed employing the (huge!) Jacobi matrix :

Stationary points :
Eqns. (3) and (4) attain the simpler form

d

dt
(ws + δw)

.
= ∇F |ws

· δw, (22)

d

dt
δw

.
= ∇F |ws

· δw (23)

The Jacobi matrix is now evaluated in the fixed point ws :
If all its eigenvalues have negative real parts, Es = EN and ws is a point attractor.
If all its eigenvalues have positive real parts, Eu = EN and ws is a point repellor
(not a typical case).
If dimEs > 0 and dimEu > 0, and dimEc = 0, ws is a saddle (typical unstable
stationary solution).
If dimEc > 0 the situation is more complicated, in the systems with controlling
parameters a bifurcation occurs.

Periodic orbits and tori :
The Jacobi matrix is now time-dependent similarly as for the rays.



Figures from:  
M. Marek and I. Schreiber: Chaotic Behaviour of Deterministic Dissipative Systems, Academia and Cambridge Univ. 
 Press, Praha 1991. 
 

 



Bifurcations

It is common that the studied systems are dependent on some real parameters
α1, α2, . . . , αM , i.e., formally

dw

dt
= F(w,α) , w ∈ EN , α ∈ EM . (24)

Structure of orbits depends on α. Bifurcation occurs when orbit structure changes
qualitatively with a variation of α at a critical (bifurcation) value α = αc.

Bifurcations of stationary points :
(M = 1) =⇒ isolated αc exist when either a unique zero real eigenvalue or a pair of
purely imaginary eigenvalues of DF ≡ ∇F|ws

appear.
(M = 2) =⇒ bifurcation curves are studied, where most of the points correspond to
single degenerateDF ≡ ∇F|ws

but there may be also points with double degenerate
Jacobi matrix.
(M > 2) =⇒ more and more complicated situations may be present.
Examples: saddle node, symmetry breaking, transcritical and Hopf bifurcations.

Bifurcations of periodic orbits :
Examples: period-doubling, periodic orbit −→ torus
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Parameterization of (mantle) convection models

The laws of conservation written by means of the dimensionless numbers are

∇ · v = 0 , (25)

−∇Π +∇ ·
(
η

ηs
(∇v + (∇v)T )

)
+ Ras

α

αs
(T − T0)er = Prs

−1

(
∂v

∂t
+ v · ∇v

)
,

(26)
∂T

∂t
= ∇·

(
κ

κs
∇T
)
−v·∇T+

Raqs
Ras
−Ds

α

αs

(
T +

Ts
Tb − Ts

)
vr+

Ds

Ras

η

ηs
(∇v+(∇v)T ) : ∇v,

(27)

where

the (surface) Prandtl number Prs = νs
κ (Pr →∞)

the (surface) Rayleigh number Ras = αs(Tb−Ts)g0d3

νsκ

the (surface) Rayleigh number for heat sources Raqs = αsg0Qd
5

νsκk

the (surface) dissipation number Ds = αsg0d
cp

.

Is such a system deterministic in 3-D?

However, not only these four numbers are controlling parameters but also dimension-
less functions η/ηs, α/αs, κ/κs (+ phase transitions + iron spin transitions + . . . ).
Is there an infinite number of parameters?
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Figure 2: From Matyska and Yuen, Lower-mantle material properties and convection models

of multiscale plumes, The Geological Society of America, Special Paper 430, 2007.
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Figure 3: From Matyska and Yuen, Lower-mantle material properties and convection models

of multiscale plumes, The Geological Society of America, Special Paper 430, 2007.



 
 

   

Figure 4: From Matyska et al., The impact of variability in the rheological activation parameters

on lower-mantle viscosity stratification and its dynamics, Phys. Earth Planet. Int., 2011, 188,

1–8.



The simplest convection system and route to chaos

∇ · v = 0 , (28)

−∇Π +∇2v + Ra(T − T0)er = Pr−1

(
∂v

∂t
+ v · ∇v

)
, (29)

∂T

∂t
= ∇2T − v · ∇T . (30)

conductive solution −→ stable stationary solution −→ periodic orbit −→ torus
−→ (Ruelle-Takens-Newhouse, intermittency, period-doubling) −→

chaos
‘‘Suppose that for there is an attracting fixed point for (Ra < Ra1) that loses its stability in a Hopf bifurcation at

Ra = Ra1 (i.e., the fixed point is replaced by an attracting periodic orbit). In addition, suppose that at Ra = Ra2 > Ra1

there is another Hopf bifurcation to a quasi-periodic orbit (i.e., the attractor is now a torus T 2). A subsequent Hopf

bifurcation at Ra = Ra3 > Ra3 creates a quasi-periodic 3-torus. However, S.E. Newhouse, D. Ruelle and F. Takens

showed that for n ≥ 3 every constant vector field on the torus T n can be perturbed by an arbitrarily small amount

to a new vector field with a chaotic attractor. Thus, in an experiment, one may see a bifurcation from a 2-frequency

quasi-periodic flow to a chaotic attractor. This route to turbulence is in contrast to the classical theory of L. Landau and

E. Lifshitz, which says that turbulence arises from the successive addition of incommensurate frequences as a parameter

is increased.” (http://www.encyclopediaofmath.org/index.php/Routes to chaos)



 
 
 

 
 
 

Figure 5: Other routes to chaos: intermittency and period-doubling. Left: the Lorenz attractor

(dA/dt = Pr(B − A) , dB/dt = rA − B − A , dC/dt = −bC + AB) near an intermittent

cycle: much of the time the trajectory is close to a nearly periodic orbit, but diverges and returns.

http://commons.wikimedia.org/wiki/Category:Chaoscope



 

 
 
 

Figure 6: Marginal stability curves for stress-free (A) and no-slip (B) velocity boundary conditions

and isothermal plates; hexagons vs. rolls. From Manneville, Rayleigh-Bénard convection, thirty

years of experimental, theoretical, and modeling work, Springer, 2006.



Let us suppose that velocity does not depend on the y-coordinate and that vy = 0.
In this case, we can obtain the solenoidal field satisfying the equation of continuity
(∇ · v = 0) by expressing velocity in the form

v ≡ (vx, vz) =

(
∂ψ

∂z
,−∂ψ

∂x

)
, (31)

where ψ = ψ(x, z) is the stream function. As

v · ∇ψ = 0 , (32)

it is clear that the isolines of ψ are the streamlines of velocity.

For the classical Boussinesq approximation without internal heating and with
infinite Prandtl number the momentum and heat equations are

∇4ψ = Ra
∂Θ

∂x
, (33)

∂Θ

∂t
= ∇2Θ− ∂ψ

∂z

∂Θ

∂x
+
∂ψ

∂x

∂Θ

∂z
− ∂ψ

∂x
. (34)

If we consider impermeable, free-slip boundary conditions for z = 0 and z = 1, we
obtain the boundary conditions in the form:

Θ = ψ =
∂2ψ

∂z2
= 0 for z = 0, 1 . (35)



We can convert the problem into the spectral domain by applying the Fourier trans-
form and sine decomposition as follows,

ψ̂(k; z, t) =
1√
2π

∫ ∞
−∞

ψ(x; z, t)e−ikx dx , (36)

ψ̂(k; z, t) =

∞∑
n=−∞

ψ̂n(k; t)einπz , ψ̂n = −ψ̂−n , (37)

Θ̂(k; z, t) =

∞∑
n=−∞

iΘ̂n(k; t)einπz , Θ̂n = −Θ̂−n . (38)

The solution of the biharmonic equation (33) in the spectral domain is

ψ̂n =
−k Ra

(k2 + n2π2)2
Θ̂n . (39)

The heat equation (34) attains the form

∂Θ̂n

∂t
=

[
−(k2 + n2π2) +

k2Ra

(k2 + n2π2)2

]
Θ̂n

+
∑
j

π Ra

(
−jkΘ̂j

(k2 + j2π2)2
∗ (kΘ̂n−j) +

(n− j)k2Θ̂j

(k2 + j2π2)2
∗ Θ̂n−j

)
. (40)



Solution of linear part of eqn. (40) thus depends on the sign of

βn(k) = −(k2 + n2π2) +
k2Ra

(k2 + n2π2)2
; (41)

clearly β1 > β2 > β3 . . . . Therefore, in this stability analysis it is sufficient to deal
with β1 only. It is clear that β1 < 0 ∀k ⇔ Ra < (k2 + π2)3/k2 ∀k. Let us find the
minimum of the function f (k) = (k2 + π2)3/k2. As ∂f/∂k = k−4(6k3(k2 + π2)2 −
2k(k2 + π2)3), f attains its minimum in km = π/

√
2; f (km) = 27

4 π
4.

To conclude: if

Ra < Rac =
27

4
π4 , (42)

the transfer of heat due to conduction represents the stable state and no convection
arises. However, if the Rayleigh number is greater than the critical Rayleigh number
Rac, convection is generated by fluctuations in the system.



 

 
 
 

Figure 7: Busse balloon showing stability of rolls (there may exist also non-roll stable solutions)

in perspective in the (k; P;R)-space, after Busse (1978); transition to turbulence in RB convection:

experimental results collected before 1973 by Krishnamurti (1973). From Manneville, Rayleigh-

Bénard convection, thirty years of experimental, theoretical, and modeling work, Springer, 2006.



 

 
 

 
 

 

Figure 8: Effect of wavenumbers discretization (A is the aspect ratio of the box). Lower and upper

boundaries are rigid and perfectly conducting (isothermal); side walls are perfectly insulating and

stress-free (left) or rigid (right).



 

Figure 9: Stationary solutions: If the convecting system is bounded by vertical walls, the

wavenumbers k become discrete =⇒ additional bifurcations can appear and/or the solutions can

attract only locally. Transition from one to two convection rolls is shown here. From Šustková,

Master Thesis, Fac. Math. and Phys., Charles Univ., 2014.



  
 

 

Figure 10: Convection in a square rigid box with perfectly conducting boundaries for Ra =

25000, 40000 and 48000.



 

 

Figure 11: Bifurcation diagram of convection in a square rigid box with perfectly conducting

boundaries.



Examples of almost (stable?) stationary solutions 
 

Ra=3 000   Pr=∞   no heat sources: 
 

 
 

 
 

Ra = 10 000   Pr=∞   no heat sources: 
 

 
 

 
 

 
 

 

Figure 12: Temperature distribution of convection in classical Boussinesq approximation. All bound-

aries are impermeable with free slip; top and bottom boundaries are perfectly conducting, side walls

are prefectly insulating.



Examples of higher Ra solutions 
 

Ra = 100 000   Pr=∞   no heat sources:                                     Ra = 1 000 000   Pr=∞   no heat sources: 
 

       
 

          
 

          
 

          
 

         
 

         
 

         
 

         

Figure 13: Time sequences of convection temperature distribution in classical Boussinesq approx-

imation. All boundaries are impermeable with free slip; top and bottom boundaries are perfectly

conducting, side walls are prefectly insulating.



Examples of high Ra solutions 
 

Ra = 10 000 000   Pr=∞   no heat sources:                                     Ra = 100 000 000   Pr=∞   no heat sources: 
 

       
 

          
 

          
 

          
 

         
 

         
 

         
 

         

Figure 14: Time sequences of convection temperature distribution in classical Boussinesq approx-

imation. All boundaries are impermeable with free slip; top and bottom boundaries are perfectly

conducting, side walls are prefectly insulating.



III. Several questions for those studying
Earth-similar complex systems

The Earth is only weakly chaotic (on geological time-scale) =⇒ material properties
stabilize the mantle convection; an analysis (i.e. finding critical values of parameters)
for complex systems can be performed (only) numerically:

• How to deal with zoology of (stable) stationary solutions?

• How to perform transition from periodic to chaotic solutions
for continuos changes of parameters (Ra) under the fact that
attractors are reached after an infinite time and everything is
complicated by bifurcations?

• How to deal with spectra of intermittent signals?

• How to quantify chaoticity of chaotic solutions (attractor dimen-
sions)?



Wavelet spectra: A tool for analysis of local chaoticity

The Lyapunov exponents, the correlation matrix as well as the Fourier spectra
of a selected quantity yield the characteristics of the studied system global behavior
(t→∞). Intermittency can be present during its evolution or chaotic behavior can
be limited to only a finite time interval, which can hardly be revealed by the global
methods. Moreover, synthetic models are usually finite, which brings problems with
evaluation of limt→∞. This is the reason why a method, which is able to reveal a
multiscale contents in analyzed signal on a neighbourhood of a fixed time t0 can be
highly desirable.

In the last decades the multiscale analysis by means of wavelets became very
popular in various physical and technical applications. There are many textbooks
and papers on wavelets, e.g. (Kaiser,1994; Daubechies, 1992). A review of geophysical
applications of wavelets can be found, e.g., in Kumar and Foufoula-Georgiou (1997).

Here we will demonstrate how wavelets yield the multiresolution analysis of the
space L2(E1) to make it clear that the decomposition of a time series into a wavelet
basis yield the information about the power of the signal on different scales in different
times.



Let ψ(t) be a real function from the Hilbert space L2(E1) with the scalar product
<f |g>L2=

∫
E1
f (t)g(t) dt and let m and n be numbers from the set of integers Z.

The translation operator T n is defined by the relation

T n(ψ) = ψ(t− n) (43)

and the dilatation operator Dm is

Dm(ψ) = 2−
m
2ψ(2−mt) . (44)

Both operators are the isometries, i.e., ||T nψ||L2 = ||Dmψ||L2 = ||ψ||L2, but they do
not commute as DmT n = T 2mnDm.

A function φ(t) is called scaling function, if the functions

φm,n(t) ≡ DmT nφ(t) (45)

are orthonormal for each fixed m, if∫
E1

φ(t) dt = 1 . (46)

and if the sequence of spaces {Vm ⊂ L2(E1)}∞m=−∞

Vm = span {φm,k(t), k ∈ Z} (47)

satisfies



1. Vm+1 ⊂ Vm ,

2. Pm(f ) = 0 ∀f ∈ L2(E1) , m→∞ ,

3. Pm(f ) = f ∀f ∈ L2(E1) , m→ −∞ ,

where Pm is the projection operator onto the space Vm. The sequence of spaces
{Vm}∞m=−∞ is called the multiresolution analysis of L2(E1).

Define the spaces Wm by the relation

Vm−1 = Vm ⊕Wm (48)

and denote byQm the orthogonal projection ontoWm. Moreover, define the operators

H = D−1P1 , G = D−1Q1 , (49)

and their adjoints
H∗ = DP 0 , G∗ = DQ0 . (50)

If we consider them like the operators between the spaces

H : V 0 → V 0 , H∗ : V 0 → V 0 , (51)

G : V 0 → W 0 , G∗ : W 0 → V 0 , (52)



we may write

H∗(φ) =
∑
n

hnT
n(φ) , (53)

G∗(ψ) =
∑
n

gnT
n(φ) , (54)

where {hn} ({gn}) are called low-pass (high-pass) filter coefficients and

ψ = D−1
∑
n

gnT
n(φ) (55)

is the mother wavelet. The functions

ψm,n(t) ≡ DmT n(ψ) (56)

are called wavelets and it holds that

Wm = span {ψm,n, n ∈ Z} . (57)

Since

L2(E1) =

∞⊕
m=−∞

Wm , (58)

the decomposition of time series into wavelets represents the natural way of time-scale
analysis.



 

Figure 15: Solid lines—real parts, dashed lines—imaginary parts. From Vecsey, PhD Thesis, Fac.

Math. and Phys., Charles Univ., 2002.



 

Figure 16: Solid lines—real parts, dashed lines—imaginary parts. From Vecsey, PhD Thesis, Fac.

Math. and Phys., Charles Univ., 2002.



 

Figure 17: From Vecsey, PhD Thesis, Fac. Math. and Phys., Charles Univ., 2002.



 
Figure 18: From Vecsey, PhD Thesis, Fac. Math. and Phys., Charles Univ., 2002.



 

Figure 19: Rayleigh numbers: Left (a) 3 × 106, (b) 3 × 107, (c) 3 × 108, (d) 109, (e) 1010; Right

1011. From Vecsey, PhD Thesis, Fac. Math. and Phys., Charles Univ., 2002.



IV. Remaining questions for those studying
Earth-similar complex systems

• How to deal with zoology of (stable) stationary solutions?

• How to perform transition from periodic to chaotic solutions
for continuos changes of parameters (Ra) under the fact that
attractors are reached after an infinite time and everything is
complicated by bifurcations?

• How to quantify chaoticity of chaotic solutions (attractor dimen-
sions)?
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