Calculating subsurface nucleonic production of noble gas nuclides: implications on crustal and mantle K, Th, U abundances

Ondřej Šrámek University of Maryland

Collaboration with Bill McDonough (Univ. Maryland) Sujoy Mukhopadhyay (Harvard) Lauren Stevens (Univ. Maryland) Jerry Peterson (CU Boulder)

Šrámek et al. EPSL 2012

How much U, Th, K in the Earth?

Estimates range from 9 to 36 TW radiogenic power

How much radiogenic heating in the mantle to power convection?

radiogenic + primordial heat + other...

Composition of Silicate Earth (BSE)

Approach:

Use noble gas isotopic ratios from gases originating at depth

- Why now?
- How to calculate ³⁹Ar production rate
- Some results

Isotopes of Argon

34 known isotopes 40 Ar ... radiogenic, stable 39 Ar ... cosmo/nucleogenic, t_{1/2} = 269 y 36 Ar ... primordial, stable

Atmosphere

⁴⁰Ar from degassing of Earth over 4.5 Gy ³⁹Ar produced cosmogenically from ⁴⁰Ar ⁴⁰Ar/³⁶Ar = 295 ³⁹Ar/⁴⁰Ar = 8×10^{-16}

Underground

 ^{40}Ar produced by electron capture on ^{40}K ^{39}Ar produced nucleogenically from ^{39}K $^{39}\text{Ar}/^{40}\text{Ar}$ < 0.006 atmospheric

Dark matter WIMP search

- Dark matter detectors looking for Weakly Interacting Massive Particles (WIMPs) require low radioactivity argon
- Atmospheric level ($^{39}Ar/^{40}Ar = 8 \times 10^{-16}$) is too high
- Gas from deep CO₂ wells shows lower level of ³⁹Ar (e.g., Cortez CO, Bueyeros NM)
- ³⁹Ar/⁴⁰Ar challenging measurements...
 - low-level radioactive decay counting
 - Atomic Trap Trace Analysis (ATTA)

Nuclear physics notation:

A(a,b)B

$A + a \rightarrow b + B$

- A ... target nuclide
- a ... projectile
- b...ejectile
- B ... product nuclide

. . .

⁴⁰Ar(n,2n)³⁹Ar atmosphere, cosmogenic

Nucleogenic production

- Decay of radioactive U and Th in Earth's interior produce α particles
- (α, n) reactions on light isotopes produce neutrons
- Neutrons are also produced by spontaneous fission of U
- (n,p) reaction then produces ³⁹Ar from ³⁹K
- → Measurement of isotopic ratios in outgassing rock can inform us about the U, Th, K

1. U, Th decay produces α's

2. (a,n) produce neutrons

³⁹K(n,p) produces ³⁹Ar

composite nucleus

Noble gas isotopic ratios

- ²¹Ne production rate proportional to [U+Th]
- ³⁹Ar production rate proportional to $[K] \times [U+Th]$
- ⁴⁰Ar production rate proportional to [K]

therefore

- ³⁹Ar/⁴⁰Ar proportional to [U+Th]
- ³⁹Ar/²¹Ne proportional to [K]
- ⁴⁰Ar/²¹Ne proportional to [K]/[U+Th]

Calculating ³⁹Ar nucleogenic production rate

- α emission from natural radionuclides
- neutron production by α-induced reactions
- ³⁹K(n,p)³⁹Ar

Table 7: ³⁹Ar production rates as calculated in several studies. Rates are reclaculated to a common K, Th, U composition of Upper Crust in *Rudnick and Gao* (2003), K=2.3 %, Th=10.5 ppm, U=2.7 ppm by weight. ³⁹Ar prod. rate in number of atoms per year per kg of rock.

Reference	³⁹ Ar prod. rate		
Mei et al. (2010)	11		
Yokochi et al. (2012)	55		
Yokochi et al. (2013)	170; 110		
This study	30		

data from National Nuclear Data Center, <u>http://www.nndc.bnl.gov/</u>

data from National Nuclear Data Center, http://www.nndc.bnl.gov/

data from National Nuclear Data Center, <u>http://www.nndc.bnl.gov/</u>

232 Th α decay scheme

data from National Nuclear Data Center, http://www.nndc.bnl.gov/

α's/decay:

Calculating ³⁹Ar nucleogenic production rate

- α emission from natural radionuclides
- neutron production by α-induced reactions
- ³⁹K(n,p)³⁹Ar

(a,n) neutron production and spectrum

- α emitted at initial energy $E_{\alpha 0}$
- α slows down and eventually stops (E=0) in the rock
- before it stops, it can participate in (α,n) reaction

neutron production function

neutrons per 1 a particle

$$P_{i}(E_{\alpha_{0}}) = N_{i} \int_{0}^{E_{\alpha_{0}}} \frac{\sigma_{\alpha,n}^{i}(E_{\alpha})}{\left(-\frac{dE_{\alpha}}{dx}\right)} dE_{\alpha}$$

atomic density stopping power

neutron spectrum

spectrum (or differential c.s.) $\frac{\mathrm{d}P_i}{\mathrm{d}E_n}(E_{\alpha_0}, E_n) = N_i \int_{0}^{E_{\alpha_0}} \frac{\mathrm{d}\sigma_{\alpha,n}^i}{\frac{\mathrm{d}E_n}{\mathrm{d}E_n}(E_{\alpha}, E_n)} \mathrm{d}E_{\alpha}$

(a,n) neutron yield and production rate

neutron production function

neutrons per 1 α particle

$$P_{i}(E_{\alpha_{0}}) = N_{i} \int_{0}^{E_{\alpha_{0}}} \frac{\sigma_{\alpha,n}^{i}(E_{\alpha})}{\left(-\frac{dE_{\alpha}}{dx}\right)} dE_{\alpha}$$

atomic density stopping power

spectrum (or differential c.s.)

$$\frac{\mathrm{d}P_i}{\mathrm{d}E_n}(E_{\alpha_0},E_n) = N_i \int_{0}^{E_{\alpha_0}} \frac{\frac{\mathrm{d}\sigma_{\alpha,n}^i}{\mathrm{d}E_n}(E_{\alpha},E_n)}{\left(-\frac{\mathrm{d}E_{\alpha}}{\mathrm{d}x}\right)} \mathrm{d}E_{\alpha}$$

neutron spectrum

neutron yield

neutrons per decay of 1 atom of parent nuclide

neutron production rate

neutrons per unit time per unit mass of rock

Stopping power of alphas in rock

SRIM calc, RG03 / SS04 composition and CRUST2.0 / PREM density (2.70 - 2.88 - 3.05 / 3.42 g/cm³)

data from Stopping and Range of Ion in Matter, http://srim.org/

18O(a,n) cross section

We use: cross sections calculated by TALYS code, http://www.talys.eu/

Neutron production function

Calculating neutron spectra

Fig. C-4. Vector diagram showing the relationship of kinematic quantities in the reaction process $m_1 + m_2 \rightarrow m_3 + m_4$.

2. More complete physical picture: TALYS code

Neutron spectrum for 8 MeV α + ¹⁸O

We use: spectra calculated by TALYS code, <u>http://www.talys.eu/</u>

$$rac{\mathrm{d}P_i}{\mathrm{d}E_n}(E_{lpha_0},E_n) = N_i \int\limits_{0}^{E_{lpha_0}} rac{\mathrm{d}\sigma^i_{lpha,n}}{rac{\mathrm{d}E_n}{\mathrm{d}E_n}(E_{lpha},E_n)} \mathrm{d}E_{lpha}$$

+ sum up over all a-decays, all a levels

$$rac{\mathrm{d}P_i}{\mathrm{d}E_n}(E_{lpha_0},E_n) = N_i \int\limits_{0}^{E_{lpha_0}} rac{\mathrm{d}\sigma^i_{lpha,n}}{\left(-rac{\mathrm{d}E_{lpha}}{\mathrm{d}x}
ight)} \mathrm{d}E_{lpha}$$

+ sum up over all α-decays, all α levels

Calculating ³⁹Ar nucleogenic production rate

- α emission from natural radionuclides
- neutron production by α-induced reactions
- ³⁹K(n,p)³⁹Ar, also ²⁴Mg(n,α)²¹Ne

Neutrons propagating and interacting in the rock

- Competition between neutron scattering, various neutroninduced reactions on various targets
- We are interested in specific reactions
- Back-of-the-envelope calculations give us an order of magnitude answer:

$$P_{39}(E_0) = L_n(E_0)\overline{\sigma_{39}}N_{39} \tag{22}$$

where $L_n(E_0)$ is the distance traveled by the neutron until its energy is decreased below the ${}^{39}K(n,p)$ threshold, $\overline{\sigma_{39}}$ is the average value of ${}^{39}K(n,p)$ cross section, and N_{39} is the atom density of ${}^{39}K$ nuclide. Using approximate values,

$$P_{39}(5 \,\text{MeV}) \approx 40 \,\text{cm} \times 0.3 \,\text{barn} \times 9 \times 10^{20} \,\text{atoms} \,\text{cm}^{-3} = 0.01$$
 (23)

• We use MCNP6 code for a more educated calculation (Monte Carlo N-Particle, <u>http://mcnp.lanl.gov</u>)

Results

Composition	tion rates in	n atoms/	kg-yr	
	⁴ He	neutrons	²¹ Ne	³⁹ Ar
RG03, Upper Crust	$1.64 imes 10^{10}$	10350	0.151	29.9
RG03, Middle Crust	8.98×10^{9}	6232	0.159	14.7
RG03, Lower Crust	1.53×10^{9}	1156	0.103	0.792
SS04, Depleted Mantle	2.51×10^{7}	22.2	0.0380	2.58E-04

Table 5: Production rates of ⁴He, neutrons, ²¹Ne, ³⁹Ar.

Table 6: Production rates of ²¹Ne by (α, n) and (n, α) and ²¹Ne/⁴He ratio.

Composition	²¹ Ne prod. rate in atoms/kg-yr		% contrib.			
	(α, n)	(n, α)	Total	(α, n)	(n, α)	²¹ Ne/ ⁴ He
RG03, Upper Crust	863.8	0.15	864	99.98	0.02	5.26×10^{-8}
RG03, Middle Crust	474.7	0.16	475	99.97	0.03	5.29×10^{-8}
RG03, Lower Crust	79.3	0.10	79.4	99.9	0.1	5.18×10^{-8}
SS04, Depleted Mantle	1.18	0.038	1.22	96.9	3.1	$4.85 imes 10^{-8}$

Yokochi et al. (1997): ${}^{21}Ne/{}^{4}He = 4.5 \times 10^{-8}$

Isotopic ratios

Trade-off between composition and "age" of system

Closed system:

²¹Ne, ⁴⁰Ar accumulate

³⁹Ar steady-state level

Summary

- New calculations of nucleonic production rates
- Combination of state-of-the-art nuclear physics tools (TALYS, MCNP6) and my own code to put everything together
- (Re-)Learned aspects of nuclear physics
- Results of interest to hydrology, dark matter experiments, crustal & mantle geochemistry
- We expect the ³⁹Ar detection methods to improve