Slapové zahřívání a konvekce v ledové slupce Enceladu: počátky konvekce

Marie Běhounková, Gabiel Tobie, Gaël Choblet, Ondřej Čadek

20.3.2013

- synchronní rotace, excentricita 0.0045
- ► poloměr 252 km, střední hustota 1608 kg/m³ (Thomas a kol. 2007)
- pravděpodobně diferenciované těleso (x less a kol.)
- složitá historie endogenní geologické aktivity, aktivní kryovulkanismus s plumami na jižním pólu a subsidencí na jižním polárním terénu (Porco a kol. 2006, Collins a Goodman 2007)
- hustota kráterů se silně mění velká koncentrace v severních šířkách a v pásech na přivrácené a odvrácené straně, jižní polární terén (South Polar Terrain SPT) neobsahuje žádné krátery větší než 1km (Porco a kol. 2006)
- některé krátery relaxované zejména krátery v jižních oblastech (Smith a kol. 2006, Smith 2007), některé krátery modifikovány nedávnými zlomy
- ► SPT ohraničen příkopy v šířkách ~ 55° NS komprese (Helfenstein 2010)
- SPT 4 paralelní útvary, 2km široké, 100 km dlouhé, 0.5 km hluboké a 100m vysoké – tiger stripes
- kryovulkanické plumy spojeny s tygřími drápy, teplota dosahuje až 223 K (očekávaná teplota 68 K)
- zdrojem pro materiál prstence E

Procter a kol. 2010, SSR

- výkon vyzářené energie 16 GW (Howett a kol. 2011)
- pozorovaný výkon řádově větší než výkon vzniklý rozpadem radioaktivních prvků
- slapové zahřívání je nejpravděpodobnější zdroj energie (disipace slapových sil díky nenulové excentricitě)
 - současné modely mají problém vysvětlit celkový pozorovaný výkon (Nimmo a kol. 2007, Tobie a kol. 2008, Tyler 2008)
 - vyžadována vodní vrstva na rozhraní silikátového jádra a ledové slupky
 - stabilita vodního oceánu není doposud uspokojivě vysvětlena (Roberts a Nimmo 2008), žádný z dosud uvažovaných modelů není schopen vykompenzovat teplotní ztratu a umožnit dlouhodobou stabilitu vodního oceánu
 - vodní oceán může být omezen pouze na aktivní hemisféru (Tobie a kol. 2008)
 - pozorovaný tepelný výkon by měl vést k rychlému snižování excentricity
 - přenos momentu hybnosti ze Saturnu na Enceladus spojený s disipací v Saturnu a 2:1 resonance s Dionem nejsou dostatečně silné na dlouhodobé urdžení současné excentricity při pozorovaném výkonu (Meyer a Wisdom 2008, Zhang a Nimmo 2009)
 - disipace v Saturnu je větší než předpokládáno (Lainey a kol. 2012) nebo eccentricita byla v minulosti výrazně větší

- vznik dichotomie může souviset s konvektivními procesy (Nimmo a Pappalardo 2006, Barr a McKinnon 2007, Mitri a Showman 2008, Roberts a Nimmo 2008, Stegman a kol. 2009, Han a kol. 2012, Běhounková a kol. 2010, 2012)
- problém vysvětlit pozorovaný výkon i pro konvektivní modely s vysokým vnitřním zahříváním – silná závislost viskozity ledu na teplotě (stagnant lid konvekce)
- pozorovaný tepelný výkon lze vysvětlit pouze pro konvekci s viskózním kontrastem 0–3 řády (Stegman a kol. 2009, Han a kol. 2012)
- epizodické přepovrchování a jeho periodicita (O'Neil a Nimmo 2010, Byerlee-style yielding criterion)

 porovnání celkového výkonu slapového zahřívání a výkonu odvedeného z vodního rezervoáru pro současnou excentricitu

vývoj celkového výkonu slapového zahřívání

vývoj produkce vody (hmotnostní frakce pro model A, Δ = 180° a e = 5e₀)

vývoj vnitřního oceánu

vývoj vnitřního oceánu

Metoda

- různé časové skály pro plášťové tečení a slapovou odezvu
- slapová odezva viskoelastický materiál
- plášťové tečení viskózní materiál, průměrná slapová disipace jako zdroj objemové energie
- teplotní závislost reologických parametrů obou procesů \rightarrow vazba

Plášťové tečení – rovnice

klasická Boussinesqova aproximace

$$\mathbf{0} = \nabla \cdot \mathbf{v}, \tag{1}$$

$$0 = -\nabla \boldsymbol{\rho} + \nabla \cdot \left(\eta(T) \left(\nabla \mathbf{v} + \nabla^{\mathrm{T}} \mathbf{v} \right) \right) - \rho_0 \alpha \left(T - T_0 \right) g_0 \boldsymbol{e}_r, \quad (2)$$

$$\rho_0 c_p \frac{\partial I}{\partial t} = -\rho_0 c_p \mathbf{v} \cdot \nabla T + k \nabla^2 T + h_i + h_{\text{tide}}, \qquad (3)$$

- jednoduchý model tavení (IME)
- okrajové podmínky
 - předdefinovaný vodní oceán dané šířky Δ
 - lineární kombinace free-slip a no-slip
 - lineární kombinace teploty a tepelného toku

Slapová odezva – rovnice

$$0 = \nabla \cdot \mathbf{u}, \qquad (4)$$

$$0 = -\nabla \rho + \nabla \boldsymbol{D} + \mathbf{f} \qquad (5)$$

síla

$$\mathbf{f} = \rho \left(\nabla \phi + \nabla V \right)$$

Maxwellovská reologie

$$\frac{\partial \boldsymbol{D}}{\partial \tau} - \frac{\partial}{\partial \tau} \left(\hat{\boldsymbol{\mu}} \left(\nabla \mathbf{u} + \left(\nabla \mathbf{u} \right)^{\mathrm{T}} \right) \right) = -\frac{\hat{\mu}}{\hat{\eta}} \boldsymbol{D}$$

okrajové podmínky

povrch: $(-pI + D) \cdot e$ rozhraní jádro-plášť: $(-pI + D) \cdot e$ a lineární kombinace $\mathbf{u} = \mathbf{0}$

 $(-\rho I + D) \cdot e_r + u_r \rho_{\text{mantle}} g = 0$ (-\rho I + D) \cdot e_r - u_r (\rho_{\text{core}} - \rho_{\text{mantle}}) g = -\rho_{\text{core}}(\phi + V) e_r u = 0

(6)

slapové zahřívání

$$H = \frac{1}{T} \int_{t}^{t+T} \frac{\boldsymbol{D} : \boldsymbol{D}}{2\hat{\eta}} \mathrm{d}\tau$$

Viskózní tečení – reologie 🕠

- $\dot{\varepsilon} = A \frac{\sigma^n}{d^p} \exp\left(\frac{E^*}{RT}\right)$ (nelineární tečení, laboratorní měření)
- $\dot{\varepsilon} = \frac{A}{T} \frac{\sigma}{d^p} \exp\left(\frac{E^*}{RT}\right)$ (difúzní tečení, teoretická předpověd)
- kompozitní reologie difúzní tečení, dislokační tečení, tečení závislé na velikosti zrna (grain-size-sensitive creep, kombinace grain boundary sliding a basal sliding), Goldsby a Kohlstedt 2001
- ►

$$\dot{\varepsilon} = \dot{\varepsilon}_{\rm diff} + \dot{\varepsilon}_{\rm disl} + \left(\frac{1}{\dot{\varepsilon}_{\rm gbs}} + \frac{1}{\dot{\varepsilon}_{\rm bs}}\right)^{-1}$$

maximální viskózní kontrast z numerických důvodů 8 řádů

	n	р	Т	<i>E</i> *	Т	E*
			K	kJ/mol	K	kJ/mol
diffusion creep	1	2	-	60	-	-
basal-slip accommodated GBS	2.4	1	-	60	_	_
GBS-accommodated basal slip	1.8	1.4	< 255	49	> 255	192
dislocation creep	4.0	1	< 258	60	> 258	180

Viskózní tečení – reologie

Boltzmannova teorie a dynamická kompliance

Boltzmannova lineární teorie

$$\epsilon = \int_{-\infty}^{t} \dot{\sigma}(\tau) J(t-\tau) \mathrm{d}\tau$$

• periodický děj $\sigma(t) = \sigma_0 \exp(i\omega t)$, substituce $\xi = t - \tau$:

$$\epsilon(t) = i\omega \underbrace{\sigma_0 \exp(i\omega t)}_{\sigma(t)} \int_0^\infty \exp(-i\omega\xi) J(\xi) d\xi$$

dynamická kompliance:

$$J^{*}(\omega) = \epsilon(t)/\sigma(t) = \mathrm{i}\omega \int_{0}^{\infty} J(\xi) \exp(-\mathrm{i}\omega\xi) \mathrm{d}\xi = J_{1}(\omega) + \mathrm{i}J_{2}(\omega)$$

 fáze (posunutí) mezi přiloženým napětím (σ₀ exp(iωt)) a výslednou deformací (ε₀ exp(i(ωt + δ))

$$\tan \delta = \frac{J_2(\omega)}{J_1(\omega)}$$

disipační faktor charakterizující ztrátu energie přes jeden cyklus:

$$Q^{-1} = \frac{\Delta E_{\text{diss}}}{2\pi E_{\text{max}}} = \sin \delta = \frac{J_2(\omega)}{\left(J_1^2(\omega) + J_2^2(\omega)\right)^{1/2}} \approx \tan \delta = \frac{J_2(\omega)}{J_1(\omega)}$$

Boltzmannova teorie a dynamická kompliance

• Maxwellovská reologie ($t \gg \tau_{\rm M}$):

$$\begin{split} J_{\rm M}(t-t') &= J\left(1+\frac{t-t'}{\tau_{\rm M}}\right)\theta(t-t'),\\ \tilde{J}_{\rm M}(\chi) &= J\left(1-\frac{\rm i}{\tau_{\rm M}\chi}\right) \end{split}$$

led – Andrade reologie

$$J(t-t') = J\left(1 + \left(\frac{t-t'}{\zeta\tau_{\rm M}}\right)^{\alpha} + \frac{t-t'}{\tau_{\rm M}}\right)\theta(t-t')$$
$$\tilde{J}(\chi) = J\left(1 + (i\chi\zeta\tau_{\rm M})^{-\alpha}\Gamma(\alpha+1) - \frac{i}{\tau_{\rm M}\chi}\right)$$

Viskoelasticita - zjednodušení

- komplexní reologický popis pro laboratorní experimenty řešení ve spektrální oblasti
- ► zjednodušení Maxwellovská reologie $J_1 = \frac{1}{\mu}, J_2 = \frac{1}{\omega \eta}$
 - popis pouze pomocí dvou parametrů, možnost zahrnout 3D variace teploty pro řešení v časové doméně
 - popisuje děje s charakteristickými časy vetšími než Maxwellovský čas
 - pro charakteristické časy menší než Maxwellovský čas podceňuje disipaci
 - → definice efektivní viskozity

$$h_{\rm M} \approx Q_{\rm M}^{-1} \approx \tan \delta_{\rm M}$$

 $h_{\rm A} \approx Q_{\rm A}^{-1} \approx \tan \delta_{\rm A}$

$$h_{\rm M}(\eta_{\rm eff}) = h_{\rm A}(\eta) \longrightarrow \tan \delta_{\rm M}(\eta_{\rm eff}) = \tan \delta_{\rm A}(\eta)$$

$$\frac{\mu}{\omega\eta_{\rm eff}} = \frac{\frac{\mu}{\omega\eta} + \left(\frac{\mu}{\omega\zeta\eta}\right)^{\alpha} \left(\Gamma(\alpha+1)\sin\frac{\alpha\pi}{2}\right)}{1 + \left(\frac{\mu}{\omega\zeta\eta}\right)^{\alpha} \left(\Gamma(\alpha+1)\cos\frac{\alpha\pi}{2}\right)}$$
$$\eta_{\rm eff} = \frac{1 + \left(\frac{\mu}{\omega\zeta\eta}\right)^{\alpha} \left(\Gamma(\alpha+1)\cos\frac{\alpha\pi}{2}\right)}{\frac{1}{\eta} + \frac{1}{\eta^{\alpha}} \left(\frac{\mu}{\omega\zeta}\right)^{\alpha-1} \left(\Gamma(\alpha+1)\sin\frac{\alpha\pi}{2}\right)}$$

tato aproximace v platná pouze za předpokladu budící síly na jedné frekvenci

Viskoelasticita - zjednodušení

Počátek konvekce (onset of convection)

- počátky konvekce (onset of convection) pro systémy zahřívané ze spodu a pro systémy s vnitřním zahříváním – klasická úloha
- isoviskózní případ analýza lineární stability, infitezimální anomálie (Chandrasekhar 1961)
- teplotně závislá viskozita anomálie s konečnou amplitudou (finite-amplitude perturbations) mohou spustit konvekci pro Rayleighova čísla menší než kritické Rayleighovo číslo (Busse 1967), charakterizace podkritické konvekce pro teplotně závislou viskozitu (Solomatov 2012)
- napěťově závislá viskozita stabilní pro všechny infinitezimální perturbace, nutné anomálie s konečnou amplitudou (Solomatov a Barr 2006, 2007)
- Barr a McKinnon 2007 první pokus k určení počátků konvekce pro Enceladus, použití škálovacích vztahů, vzájemné působení různých mechanismů deformace, maximální velikost zrna 0.3 mm pro počátek konvekce, konvekce může být spuštěna slapovým zahříváním

Počátek konvekce (onset of convection)

Solomatov (2012)

critical Rayleigh number Racr, absolute minimum critical Rayleigh number Racr,

Počátek konvekce (onset of convection)

- specifické vlastnosti Enceladu
 - kombinace teplotně a napěťově závislé viskozity (převládá ale difúzní tečení)
 - heterogenní okrajové podmínky
 - heterogenní vnitřní zahřívání vznik konečných perturbací
 - Rayleighovo číslo blízko kritickému Rayleighovu číslu (low Rayleigh number convection, subcritical convection?)
- termální anomálie nemohou nikdy vymizet díky heterogenním vnitřním zdrojům nenulové rychlosti i v případě nekonvektujícího systému
- systém s konvekcí advekce hlavní transportní mechanismus přenosu tepla (mimo hraniční vrsty)
- systém bez konvekce difúze hlavní transportní mechanismus přenosu tepla
- přítomnost konvekce řízena zejména velikostí zrna (difúzní deformace je převládajícím mechanismem)
- vnitřní heterogenní zahřívání podporuje vznik konvekce snížení viskozity a zvýšení hustotních kontrastů

Počátek konvekce – závislost na velikosti zrna

Počátek konvekce – rozložení teplot a disipace

Počátek konvekce – závislost na šířce oceánu

Fázový diagram

Závěr

- bez slapového zahřívání
 - kritická velikost zrna 0.5 mm, 5-15% objemu by muselo být tvořeno nečistotami o velikostí 0.1 mm (Durand a kol. 2006)
 - vznik konvekčních nestabilit nad celým vodním rezervoárem
 - zvýšení rychlostí vlivem počátku konvekce vede k rychlému přenosu tepla z vodního rezervoáru

Závěr

- se slapovým zahříváním
 - zvýšení kritické velikosti zrna na 1 1.5 mm pokud je slapové zahřívání dostatečně veliké, 0.5-2% objemu by muselo být tvořeno nečistotami o s velikostí (Durand a kol. 2006)
 - vznik konvekčních nestabilit v místech největšího slapového zahřívání (oblast pólů), poté postupné rozšíření
 - zvýšení slapové disipace, které vyváží přenos tepla z vodního rezervoáru
 - konvekce ovlivněna jen málo pro maximální velikost vnitřního zahřívání 0.2 · 10⁻⁶ W m⁻³
 - pro maximální velikost vnitřního zahřívání 0.2 1 · 10⁻⁶ W m⁻³ slapové zahřívání zvyšuje kritickou velikost zrna
 - pro maximální velikost vnitřního zahřívání větší než 1 · 10⁻⁶ W m⁻³ se kritická velikost zrna již nezvyšuje (přítomnost tavení potlačuje další zvyšování vnitřní teploty a hustotních anomálií)
 - tavení pozorováno pro maximální velikost vnitřního zahřívání přesahující 0.5 - 0.9 · 10⁻⁶ W m⁻³
 - přítomnost taveniny v ledové matici ovlivňuje velikost zrna
 - vliv objemových změn vlivem tavení vyvolává kumulaci napětí
 - velikost vnitřního oceánu ovlivňuje počátek konvekce nepřímo pro malý vodní rezervoár nutno uvažovat vyšší excentricitu než velký vodní rezervoár k dosažení stejného slapového zahřívání (Δ = 120° a e = 4e₀, Δ ≥ 180° a e = 2e₀)

Problémy a budoucí plány

- Andrade reologie v časové oblasti
- ▶ vývoj excentricity jednoduché modely, disipace Saturnu Q = 10³ 10⁵
- vývoj velikosti zrna
 - vliv nečistot a přítomnosti taveniny
 - rovnovážná rekrystalizace zrna (Šhimizu 1998, Barr a McKinnon 2007) bere se v úvahu pouze tečení citlivé na velikost zrna
 - zahrnutí kinetiky (závislost na historii) růst (minimalizace povrchové energie), redukce velikosti (rotační rekrystalizace, pro gss a dislokačí tečení)
- stabilita oceánu, zmenšování/zvětšování plochy oceánu?, vliv příměsí snižujících bod tání (antifreezer)
- volumetrické změny vlivem vzniku taveniny kumulace napětí, epizodické přepovrchování a periodicita

Problémy a budoucí plány

Problémy a budoucí plány

- Andrade reologie v časové oblasti
- ▶ vývoj excentricity jednoduché modely, disipace Saturnu Q = 10³ 10⁵
- vývoj velikosti zrna
 - vliv nečistot a přítomnosti taveniny
 - rovnovážná rekrystalizace zrna (Šhimizu 1998, Barr a McKinnon 2007) bere se v úvahu pouze tečení citlivé na velikost zrna
 - zahrnutí kinetiky (závislost na historii) růst (minimalizace povrchové energie), redukce velikosti (rotační rekrystalizace, pro gss a dislokačí tečení)
- stabilita oceánu, zmenšování/zvětšování plochy oceánu?, vliv příměsí snižujících bod tání (antifreezer)
- volumetrické změny vlivem vzniku taveniny kumulace napětí, epizodické přepovrchování a periodicita

