Time-varying subduction and rollback velocities in slab stagnation and buckling

Hana Čížková Charles University in Prague

Craig Bina Northwestern University Evanston

SLAB STAGNATION

Fukao et al., 2009

SLAB STAGNATION

Obayashi et al., 1997

Widiyantoro, 1997

old slabs \rightarrow cold and heavy \rightarrow rollback

BUT: cold old slabs are stiff \rightarrow good stress guide \rightarrow advance (Gerault et al., 2012)

Husson, 2012 → rollback is controlled primarily by mantle drag, slab rheology plays only minor role

TRENCH VELOCITY

Fig. 3. Normal component of trench velocity *V*_{t(n)} in four absolute reference frames: (a) hot spot reference frame of Gripp and Gordon (2002), which analyses the Pacific hot-spot track; (b) hot spot reference frame of Gordon and Jurdy (1986), which considers both the Indo-Atlantic and the Pacific hot-spot tracks; (c) hot spot reference frame of Steinberger et al. (2004), which investigates only the Indo-Pacific hot-spot tracks; (d) no-net-rotation reference frame (Gripp and Gordon, 2002). Reference velocity is indicated at the bottom-left of each panel.

Funiciello et al., 2008

NUMERICAL MODELING TRENCH ROLLBACK

Target: find the parameters of slabs (rheological parameters, age?) that may control the trench migration

Main focus: rheological description – effects of nonlinear rheology

NUMERICAL MODELING TRENCH ROLLBACK

Target: find the parameters of slabs (rheological parameters, age?) that may control the trench migration

Main focus: rheological description – effects of nonlinear rheology

??? FREE PARAMETERS OF RHEOLOGICAL DESCRIPTION ??? Activation parameters, lower mantle viscosity jump

Estimate of the lower mantle viscosity based on sinking speed of detached slabs

MODEL: COMPOSITE RHEOLOGY

Diffusion creep

Dislocation creep

$$\boldsymbol{\varepsilon}_{diff} = A_{diff} \ \boldsymbol{\sigma} \ \exp\left(-\frac{E_{diff} + pV_{diff}}{RT}\right)$$

$$\varepsilon_{disl}^{\bullet} = A_{disl} \ \sigma^{n} \exp\left(-\frac{E_{disl} + pV_{disl}}{RT}\right)$$

$$\boldsymbol{\varepsilon}_{sl} = \boldsymbol{C}_L \left(\frac{\boldsymbol{\sigma}}{\boldsymbol{\sigma}_L}\right)^{n_L}$$

MODEL: RHEOLOGICAL PARAMETERS

Crust Constant viscosity 10²⁰ Pa s

Upper mantle

Activation parameters according to Hirth and Kohlstedt (2003) Yield stress 0.5 GPa

Lower mantle Diffusion creep **A**-family $V_{diff} = 1.1 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1}$ **B**-family $V_{diff} = 2.2 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1}$

(PPV: $\eta_{PPV} = 10^{21} \text{ Pa s}$)

MODEL: VISCOSITY INCREASE AT 660 km

A-family **B-family** S&C, 2006 depth (km) depth (km) S&C, 2006 log η log η

MODEL: THERMAL EXPANSIVITY

AGE vs. DEPTH

Čížková et al., PEPI 2012

BOTTOM AND TOP OF SLAB REMNANTS

Van der Meer et al. (2010)

Čížková et al., PEPI 2012

MODEL SETUP – ROLLBACK AND SLAB STAGNATION STUDY

MODEL SETUP – ROLLBACK AND SLAB STAGNATION STUDY

MODEL SETUP – ROLLBACK AND SLAB STAGNATION STUDY

t = 50Ma

t = 40Me

t = 30Ma

t = 20Me

t = 10Ma

t = 20Ma

t = 50Ma

t = 40Ma

t = 30Ma

t = 10Ma

rollback

t = 50Ma

t = 40Ma

t = 30Ma

t = 20Ma

t = 10Ma

RESULTS: EFFECT OF THE LOWER MANTLE VISCOSITY

RESULTS – snapshot after 50 Myr

Effect of the lower mantle viscosity

RESULTS: EFFECT OF THE CRUSTAL VISCOSITY

$$\eta_{crust}$$
 = 10^{21} Pas

$$\eta_{crust} = 5.10^{20} \text{ Pas}$$

$$\eta_{crust} = 2.10^{20} \text{ Pas}$$

$$\eta_{crust} = 10^{20} \text{ Pas}$$

$$\eta_{crust} = 10^{19} \text{ Pas}$$

RESULTS – snapshot after 50 Myr

Effect of the crustal viscosity

snapshot after 90 Myr

penetrating slabs

RESULTS – snapshot after 50 Myr

Effect of the yield stress

RESULTS – plate and rollback velocities

RESULTS – snapshot after 50 Myr

Effect of the Clapeyron slope

RESULTS – snapshot after 50 Myr

Effect of the Clapeyron slope

RESULTS – trench distance after 60 Myr

Huang and Zhao, 2006

Obayashi et al., 1997

Widiyantoro, 1997

CONCLUSIONS – SLAB STAGNATION AND ROLLBACK

- all modes display rollback (effect of ridge push?)
- relation between plate velocity and rollback
- most models predict slab stagnation in the transition zone
- slow slabs (due to higher friction on the contact) have slower rollback and penetrate to the lower mantle – effect of higher astenospheric viscosity?
- more negatively buoyant slabs have faster rollback
- stiffer slabs have faster rollback (no reduction due to the periods of increased subduction velocity)
- implications of rollback periodicity to exhumation