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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Main phenomena to capture:

+ short time scales (<<1 mil. yrs) — small-strain concept suffices,
+ tectonic earthquakes: sudden activated damage,

+ recovery after earthquakes: healing/rebonding,

+ no memory of previous configurations before a last earthquake,
+

fluidic-like aseismic response under slow motions (~ 1pum/yr):

Maxwell-type rheology (also only small attenuation of seismic waves:
the ratio dissipated energy per period = 27 is smaII;
stored energy Q

Q® = the “quality factor”, its typical values in Earth ~ 1

03:t1

-+ emission and propagation of seismic waves: inertia needed.

Neglected phenomena (e.g.):

— temperature variations (in particular, no volcanic earthquakes),

— “multi-Maxwell” rheology,
possible opening of the fault (Signorini contact) < big geostatic pressure,
— etc. etc.
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

State of art in seismic modelling: huge modelling activity during decades worldwide

multiscale problem in time
(slow motion between earthquakes vs fast earthquakes)
but often different time-scalles modelled separately

multiscale problem in space (large bulk vs narrow faults):
but models in bulk does not relate with models on the faults

healing towards (nearly) original configuration — not desired
but typically either no plastic strain or damage-determined plastic strain
— validity for only short times

friction concept on the faults (Dieterich-Ruina model):
but friction coefficient (depending on “ageing”) often allowed negative

numerical schemes without guarancy of stability or convergence
no mathematical analysis of continuous models

no energetics traced numerically, and mostly nor theoretically.

itek (SpoMech seminar, Ostrava, May 10, 2012)  Rupture of lithospheric faults with earthquakes



Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Inelastic ( “plastic-like”) model occasionally used in geo-physics:

Comparison between theoretical predictions and the observed de-

A A ) formation and acoustic emissions from laboratory experiments in

some irreversible strain: granites and sandstones led Hamiel ef al. (2004a) to incorporate

gradual accumulation of a damage-related non-reversible deforma-

tion. This irreversible (inelastic) strain, s;’j. starts to accumulate with

. . . the onset of acoustic emission and the rate of its accumulation is
irreversible strain 5)'/1'1 suggested to be proportional to the rate of damage increase:

damage 1 — «

the goal: to record

de? C,degd de o
— — i Vidt Tif o dt
(o = 0 =no damage) il R (N
dt —

(c = 1 =complete damage)
where C, is suggested to be a material constant and crf] is the de-
viatoric stress tensor. The effective fluidity or inverse of viscosity
. p (Cyda/dt) relates the deviatoric stress to the rate of irreversible

a = —cC ga strain accumulation. Following Maxwell viscoelastic rheology
with &€ the stored energy, model the total strain tensor. &', is assumed to be a sum of the
elastic strain tensor and the irreversible viscous component of de-
formation, thatis, &3 = &;; + £};. This model assumption means that

Usual damage dynamics:

sometimes even

L d / . X : . .
o= —C (5 a4 ER)Q the total irreversible strain accumulated during the loading should
with R the viscous dissipation. be proportional to the overall damage increase in the tested rock
sample.

Y.Hamiel, O.Katz, V.Lyakhovsky, Z.Reches, Y.Fialko, Geophys. J. Int., 2006:
also e.g. in Y.Hamiel, V.Lyakhovsky, S.Stachits, G.Dresen, Y.Ben-Zion Geophys. J. Int.,2009
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Model formulation Several closely related rate- and state-dependent

formulations have been used to study sliding phe-
nomena and earthquake processes (Dieterich, 1979,
1981; Ruina, 1983; Rice, 1983). The Ruina (1983)
simplification of the Dieterich (1981) formulation
for sliding resistance is widely used and may be
written as

Dieterich-Ruina’s model:

.. ) g
the most popular friction-type model: = rr[;a;. Faln (T) Fbln (?J] (1

where 7 and o are shear and effective normal stress
(compression positive), respectively; pg, @, and b are

friCtiOn Coefﬁcient T, experimentally determined constants; & is sliding
. R . speed;  is a state variable (discussed below) that
dependlng on rate 5 (:Sllp Speed) evolves with slip- and normal stress-history; and 5
and ageing 0. and " are normalizing constants. The constant 6" in
eqn [1] is often replaced by #* = ), /&* where D, is

. . a characteristic slip parameter described below. The

USUaI ageing ODE dynam|C5: nominal cueﬂ‘luiel!ltluf friction, g, is defined at a
. . a‘ reference slip rate and state (6 =670 =0" and gen-
0=1-— G(C]_(S + sz) erally has values of 0.6-0.7. For silicates at room
i (oa temperature, ¢ and » have roughly similar values
with o the stress in the range 0.005-0.015 (Dieterich, 1981; Ruina,
(Linker, Dieterich, 1992) 1983; Tullis and Weeks, 1986; Linker and

Dieterich, 1992; Kilgore et al, 1993; Marone and
Kilgore, 1993; Marone, 1998).
As & or f approach zero, eqn [1] yields unaccep-
tably small (or negative) values of sliding resistance.
To limit the minimum value of g some studies
(Dieterich, 1986, 1987; Okubo and Dieterich, 1986;
J.H. Dieterich, a survey chapter, 2007: Okubo, 1989 Shibazaki and fio, 2003) use a modified
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Spatially multiscale problem: Schematic geometry:

o
Z
I'p T
& 5
e olwn
time-
dependent
a-priori Q
. 3
known dis- I'p
placement AN
A

Notation: [ =1 Ul U .... for pre-existing faults.

Philosophy of the model:
@ concept of internal parameters systematically used,
@ energy-governed evolution, rational mechanics,

@ damage with healing  (rate dependent)
+ plasticity without hardening (here rate indedendent),

@ analogously on faults (= adhesive contact + interface plasticity).
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Variables in the bulk:
u displacement, e(u) small-strain tensor,
7 plastic strain,
e Maxwell strain,
¢ damage.
Governing equations in the bulk:
momentum equilibrium:

ou —dive =f = a bulk force (here just gravity) ,
with ¢ mass density, and o the stress:
o =Do(¢)e(t) + C(¢)(e(u)—m—e) with
D(¢)e = C(¢)(e(u)—m—¢) ,
where C is a tensor of elastic moduli (dependent on damage ¢) ~ 10GPa
Dy is a tensor of Kelvin-Voigt-viscosity moduli (dependent on damage (),
D is a tensor of Maxwell-viscosity moduli (dependent on damage (),

presumably large to pronounce such aseismic fluidic-like behavior only for
medium or very large time scales
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Variables in the bulk:
u displacement, e(u) small-strain tensor,
7 plastic strain,
e Maxwell strain,
¢ damage.
Governing equations in the bulk:
momentum equilibrium:

ou —dive =f = a bulk force (here just gravity) ,
with ¢ mass density, and o the stress:
o =Do(¢)e(t) + C(¢)(e(u)—m—e) with
D(¢)e = C(¢)(e(u)—m—¢) ,
where C is a tensor of elastic moduli (dependent on damage ¢) ~ 10GPa
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medium or very large time scales
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Variables in the bulk:
u displacement, e(u) small-strain tensor,
7 plastic strain,
e Maxwell strain,
¢ damage.
Governing equations in the bulk:
momentum equilibrium:

ou —dive =f = a bulk force (here just gravity) ,
with ¢ mass density, and o the stress:
o =Do(¢)e(t) + C(¢)(e(u)—m—e) with
D(¢)e = C(¢)(e(v)—m—¢) ,
where C is a tensor of elastic moduli (dependent on damage ¢) ~ 10GPa
Dy is a tensor of Kelvin-Voigt-viscosity moduli (dependent on damage (),
D is a tensor of Maxwell-viscosity moduli (dependent on damage (),
presumably large to pronounce such aseismic fluidic-like behavior only for

medium or very large time scales
(typical values in Earth mantle are ~ 10%%2 Pa s).
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Variables in the bulk:
u displacement, e(u) small-strain tensor,
7 plastic strain,
e Maxwell strain,
¢ damage.
Governing equations in the bulk:
momentum equilibrium:

ou —dive =f = a bulk force (here just gravity) ,
with ¢ mass density, and o the stress:
o =Do(¢)e(t) + C(¢)(e(u)—m—e) with
D(¢)e = C(¢)(e(v)—m—¢) ,
where C is a tensor of elastic moduli (dependent on damage ¢) ~ 10GPa
Dy is a tensor of Kelvin-Voigt-viscosity moduli (dependent on damage (),
D is a tensor of Maxwell-viscosity moduli (dependent on damage (),
presumably large to pronounce such aseismic fluidic-like behavior only for

medium or very large time scales
(typical values in Earth mantle are ~ .3x10%2.GPa mil.yrs).
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

A plastic flow rule (single-threshold linearized gradient plasticity, no hardening)
7 € Nogoyp (dev((C(()(e(u)fﬂ'fe) - nm))
with « : [0,1] — [0, 1] monotone with a(1) = 1 and Np =the normal

cone to the convex set P whose surface determines the plastic yield stress
in undamaged material, and the flow rule for a scalar gradient damage

H(0) ~ €(0) > 5 C()(els)—m—<):(e{u) 7<)
+ div(novg + nl|vg'|f*2vé),

_ al if ¢ >0,
with §(¢) ={[-0,0] if{=0,
bl —0 ifC<0,

with ¢ = ¢(¢) the stored energy for bulk damage,
0 is the dissipation energy for bulk damage,
Ko, 61 >0 (small) coefficients for length-scale of damage profiles.
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

A plastic flow rule (single-threshold linearized gradient plasticity, no hardening)

7 € Nagoyp (deV(C(C)(E(U)*W*E) - “A”)) =7 (dev(W»

with « : [0,1] — [0, 1] monotone with a(1) = 1 and Np =the normal
cone to the convex set P whose surface determines the plastic yield stress
in undamaged material, and the flow rule for a scalar gradient damage

H(0) ~ €(0) > 5 C()(els)—m—<):(e{u) 7<)
+ div(novg + nl|vg'|f*2vé),

_ al if ¢ >0,
with §(¢) ={[-0,0] if{=0,
bl —0 ifC<0,

with ¢ = ¢(¢) the stored energy for bulk damage,
0 is the dissipation energy for bulk damage,
Ko, 61 >0 (small) coefficients for length-scale of damage profiles.

Tomas Roubitek (SpoMech seminar, Ostrava, May 10, 2012) Rupture of lithospheric faults with earthquakes



Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

A plastic flow rule (single-threshold linearized gradient plasticity, no hardening)

# € Nagge (4ev(C(Q)e(e)n-2) — ) = W (v (M)

with « : [0, 1] — [0, 1] monotone with a(1) = 1 and Np =the normal
cone to the convex set P whose surface determines the plastic yield stress
in undamaged material, and the flow rule for a scalar gradient damage

Q) ~ ¢(C) 3 —5C(C) (e)—m—2):(e(u)~7—)
+ div(/ioVC + n1|vé|f—2vg'),

with =05, §(C) = S1¢"P + 2IE P~ ¢,

with ¢ = ¢(¢) the stored energy for bulk damage,
0 is the dissipation energy for bulk damage,
Ko, 61 >0 (small) coefficients for length-scale of damage profiles.
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

A plastic flow rule (single-threshold linearized gradient plasticity, no hardening)

. D(¢)e—krA

7 € Nooyp (dev((C(C)(e(u)fwfe) — /{Aw)) = Np (dev(%))
with « : [0, 1] — [0, 1] monotone with a(1) = 1 and Np =the normal
cone to the convex set P whose surface determines the plastic yield stress
in undamaged material, and the flow rule for a scalar gradient damage

Q) ~ ¢(C) 3 5 C(C) (e)—m—2):(e(u)~7—)

4= diV(HoVC 4 mIVé“I"zVC'),

. . a - b . -
with | = OF, S(C):g\CﬂzJFEK -0
The modelling assumptions:

C(-) and ¢(-) are constant on (—o0,0] and on [1,00), respectively:
= the desired contraints 0 < ¢(-) < 1 kept and

only one set-valued mapping in the (-flow rule (...math works),
Tomas Roubitek (SpoMech seminar, Ostrava, May 10, 2012)
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

A plastic flow rule (single-threshold linearized gradient plasticity, no hardening)

# € Naggp (4w (C(0)e(e)-n-2) — ) = W (dev (X2

with « : [0,1] — [0, 1] monotone with a(1) = 1 and Np =the normal
cone to the convex set P whose surface determines the plastic yield stress
in undamaged material, and the flow rule for a scalar gradient damage

HE) ~ ¢() 2 —2C() (e(u)~T—<): (e(w)—7—)
+ diV(KroC + 161|V€:|r_2vé),

with =08, §()= 51+ + 1¢ 7 —o¢

The modelling assumptions:
a(¢) decays for ¢ — 0+ sufficiently fast w.r.t. C(¢)
—  when undergoing damage, stress decays but
the plastic yield stress decays faster so m may start evolving.
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Model formulation Main phenomena to capture, state of art
Model in the bulk

Model on the fault, the complete model

The rheological model used in the bulk:

D i C 3 aP
Do e

Tvisc

Fig.1 Schematic 4-parameter rheological model used in (2.1a-c,e): Maxwell ma-
terial (C, D) in series with perfectly plastic element P and parallel with a
damper y. Damage ¢ influencing C, I, Dy, and « is not depicted.

Combination of Maxwell + Kelvin-Voigt = Jeffrey

(+plasticity without hardening)
The Maxwell attenuation D large (but physically justified).
The Kelvin-Voigt attenuation Dy only expectedly very small _(saving math).
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Model formulation

Main phenomena to capture, state of art
Model in the bulk

Model on the fault, the complete model

Flow rule for damage:

dissipation potential § “effective” dissipation potential §(-) — ¢ =driving energy
! ~
N
N 4
40 2 ¢
X
S N healing , ¢ /a
. . D . dactlvatlon o — o 0
N C ~ ~ amage -
S | 5 ivation —c¢'—2 healing
activation —¢' —0 ~ rate at
— 0 stress
<« rate of damaging  healing — ¢/a —_— |

slope b

Fig.2 Schematic illustration of damage/healling driven by “effective” dissipation potential, its shift
by a contribution coming from the stored energy if ¢(-) were afline (middle) and the maximal
monotone graph (=its gradient) occurring in the left-hand side of the flow rule (3.10b) (right).
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Energetics in the bulk:
the bulk contribution to the stored energy:

t/ %C@)@@O—w—@:@og—w—g)—c@)
9A\K'e’

Evu(t, u, (,m,€) = —f-u+ %|VC|2 + g|V7T|2 dx if [u], =0 a.e. on I, and
LI||'D = uDir(t) a.€. on I_D7
+00 elsewhere,

where [u], = the normal component of the differences of the traces on I,
the (pseudo)potential of dissipative forces:

RinaGi . 7.8) = [ SDo(Oe(ie(i) + 5(0)
+ SLI9E)" + a(C)5h(F) + 2 D(C)E:¢ dx

where 6= Fenchel-Legendre' conjugate to the indicator function Jp of a
convex set P, and the kinetic energy is

M@:L%Ww.
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

The idea: to “translate” the model from the d-dimensional bulk
to the fault considered as a (d—1)-dimensional surface.
Variables on the fault(s) I:

& interfatial “strain” = [u] = jump of displacements,

m; interfatial plastic slip,

e; interfatial Maxwell slip,

¢; interfatial damage.
The interfacial stored energy:

Etauts (&, Gy T, €1) 2:/ %Ci(Ci)(erT(WhL&))'(erT(WhL&))
el

Koi K1j
—a(G) + 20|vsCi|2+ 71|Vs7"i|2d5

and the interfacial potential of dissipative forces:

. 1 ..
"+ ai(G)op, () + SDi(G)erEi dS,

Reauie (G C.i,fTi, &) = / 51(@) + @|vs<.i
e i

where V denotes the “surface gradient” (i.e. the tangential derivative
defined as V,v = Vv — (Vv-v)v for v defined around [g).
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Merging the bulk and the fault models: the state as the 7-tuple

q= (U,C,Tl',é?) with ¢ = (Cagi)v ™= (7T>7Ti)7 €= (E,Ei).

Then the overall stored energy £ = £(t, q):

g(t, CI) = g(t, u, Ca T, E) = 5bulk(ta u, C, , 5) 4 gfault( [[U]] ) Cja i, 6i)a
the overall (pseudo)potential of dissipative forces R = R(q; q):

R(q, d) = R(C, L-la é7 7'.l'7 é) = Rbulk(c; L-la é7 7%7 é) + Rfault(Ci; éia 7}1’ 6:i)a

and the kinetic energy as before

The evolution to be governed formally by:

M+ 04R(¢: q) + &(t,q) 2 0.

Tomas Roubitek (SpoMech seminar, Ostrava, May 10, 2012)  Rupture of lithospheric faults with earthquakes



Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

In a bit more details, in terms of the particular components:
dynamics for displacement (momentum equation + boundary conditions):
M+ R b) + E,(t,u,¢,m,€) =0,

damage flow rule:

9;R(C) + EL(t,u.¢,m,€) 30,

plastic flow rule:
O.R(C )+ En(t,u, ¢, m,€) 50,
dynamics for Maxwellian strain/slip:
RL(C:€) + EL(t,u, ¢, m,e) =0,

by using that 0;R = 0;Ruuik is single-valued independent of (;, that
Og-R is independent of ¢, and &(t,, -, ) is smooth.
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

The initial conditions:
U(O) = Up, C(O) = CO7 7T(O) = T, 5(0) = €&op, &(0) = V.
Energy balance formally:

MU(0) + E(ea(0) + [ ZCa(0)dt = M)+ E(t,a0) / £i(t.a)a

kinetic + stored energy  dissipated energy over Kinetic+stored energy Work done by loading
at time t the time interval [0, t] at time t = over time interval [0, t]

with qo = (uo, (o, 70, €0) and the dissipation rate =(¢; q) = (9,R(¢: q), d).

In fact, a transformation to time-constant Dirichlet by replacing u with
u—+up(t) with a suitable extension up(t) of up;(t) is needed to give a
sense to &;.
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

The governing equations/inclusions arising on the faults I.:
[[J]]n =0, [[U]]t = Ci(¢) ([u]-T(mi+e)), [u(t,))] -v=0,

(u)—m—e)]v and

where [o], = v - [Do(¢)e(a(t, -)) + C(C)(e
u)=mr—=e)] = [o]nv,

where [o]; = [Do(¢)e(u(t, -)) + C(C)(e(
fl(Cl) —(G) > _%Ci/(Ci)([[u]]_jr(ﬁi+€i))'([[u]]_T(Wi+€i))
+ div, (KOiVS ¢ + K1l Vs Q:i
. aiéi if éi >0,
with fi(G) = ¢ [-9,0] i =0,
bil, —0; if( <0,

n=2y.¢)

7'.(1 € Nai(ci)pi (Ci(Ci)([[u]]—T(m—i—ei)) = diVSVSm),

& =D YG)CI(G) ([u]-T(mi+ei)),

where divy := trace(V;) denotes the (d—1)-dimensional ‘“surface divergence’ .

Rupture of lithospheric faults with earthquakes
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Model formulation Main phenomena to capture, state of art
Model in the bulk

Model on the fault, the complete model

cussed by Lyakhovsky et al. [1997], the elastic potential is
Remark 1: Non-quadratic and even Wwritten as U,
non-convex stored energies: U=E(5‘| *”12*1’11@)» (an

where A and p are Lame constants, I,=gy. and L=g;e; are two

the goa|: to reflect instabilities: independent invariants of the strain tensor g;, and v is an ad-

ditional elastic modulus (summation notation is assumed).

The second order term with the new modulus y accounts for

even detailed data based on microcrack opening and closure in a damaged material. The

o o term incorporates nonlinear elasticity even for an infinitesimal

observations/experiments strain, and it simulates abrupt change in the elastic properties

are available when the loading reverses from compression to tension. Using
(8), the stress tensor is derived from (11) as

mathematically, it would need oy =[A‘y£]l,5ij +(2u—y—7— an
Ve(u)-terms in &, '
i.e. the concept of dependencies of the elastic moduli A, , and yon damage:
2"9_orded non-simple materials h=ho +ok,.
L= g O (16)
Y-

V.Lyakhovsky, Y.Ben-Zion, A.Agnon, e aop, u=p,, and y=0 correspond to initial elastic moduli
J. Geophys. Res., 1997:  of the uncracked material. Combining equations (10), (11),
and (16) yields an equation of damage evolution
dot A X
E:—CD(?[I?*'M,I;;*Y,LJEJ, (17
also e.g. in V.Lyakhovsky, Z.Reches, R.Weinberger, T.E.Scott, Geophys. J. Int., 1997
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Model formulation Main phenomena to capture, state of art
Model in the bulk
Model on the fault, the complete model

Remark 2: Relation with the frictional models:

The usual frictional contact: the dissipation rate uo,|m;| with
mi; = T~ [u]; and here [u], = 0 (no cavities).
serious mathematical difficulties even if u is constant

= regularization: “penalization” of [u], = 0 (=small penetration allowed) or
“penalization” of Tm = [u]s
which is, in fact, the adhesive concept chosen here.

C; large and neglecting the Maxwellian slip €; = 0,
= [uls ~ Tm;
P; a ball of the radius r;
= the dissipation rate ai(¢;)dp, (7:) ~ ai(G)n[[d]sl,
= a;(¢)n is in the position of the coefficient of friction.
¢; in the position of the variable “ageing”.

more coefficients state dependent, as e.g. also 9; = 9;(¢;) or a; = a;(¢;)
= additional fitting possible.
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Ser nplicit time discretization

Analysis A-priori estimates
Convergence towards weak solutions
The semi-implicit discretisation: first calculate (uX, wk, ek):
k k—1 k—2 k k—1
us—=2u""4u us—u
1 YT T T / k—1. Y1 T / k k—1 k _ky __
M Twz&(g T) + & (kr, uk, ¢tk ek) =0,

0-R Ck_l-ﬂ-iiﬂ-l;il 4 &L (kr, ik, ¢k ek ek) 50
o T ’7 ™ T’UT’CT ’7‘-7’57—)9 )
R’ Ckfl-% + Lk, ¢k k) = 0
e\>T '’ T € T’UT7CT 7777—;57—)— .

It advantageously decouples the problem and keeps the variational structure.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

The semi-implicit discretisation: ~second calculate ¢X

k_o k=1 k=2 Kk k=1
M Ty R (e, L) &) kr, uk, ¢k e) =,
(Ci ¢t

T

k_ o k—1
-

TrTr )+ (ke uk Gk k) 5 0,

9 R ) + EL(kT, uk, ¢X wk eX) 50,

a. ,R(Ck i,
k k—1
R/ (Ck 1, ﬁ) J,-E;(kT, Ui,Cf—ilaﬂ-i)Ek) = 0
T

T

It advantageously decouples the problem and keeps the variational structure.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

The semi-implicit discretisation:

uk—

k k=1, , k=2 k 1
ut—2u" " +u u
/ T T / k »~k—1 k _k
- ) + & (kTyul, ¢ wr,eX) =0,

T 5 T / k—1.
M . R, (CT ;

k
C (C‘r f‘r )—&—Eé(kT,ui?Ci,Trf_,Ei)BO,

k k—1
a R(Ck 1. ™ :‘r )+g/ (kT UT,Ck 1 k Ef—) 90’
Ek Ek_l
R (67 S kb ¢t ek ) o
T

It advantageously decouples the problem and keeps the variational structure.

Basic assumptions: uncomplete damage

C(-), Ci(+) continuously differentiable, uniformly positive definite,
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

The semi-implicit discretisation:

uk—

k k=1, , k=2 k 1
ut—2u" " +u u
/ T T / k »~k—1 k _k
- ) + & (kTyul, ¢ wr,eX) =0,

T 5 T / k—1.
M . R, (CT ;

k
C (C‘r f‘r )—&—Eé(kT,ui?Ci,Trf_,Ei)BO,

»

k—1
T . —T
kl TTT )+g/(k7_u7—’ck1 kEk)BO,

T

a. R(C
, k1€k ekt / k k=1 _k _k
R (c T) 4 & (kT uk, ¢kt mk eky = 0.

T

It advantageously decouples the problem and keeps the variational structure.

Basic assumptions: uncomplete damage without weakening

C(-), Ci(+) continuously differentiable, uniformly positive definite,
C(-)e:e and Ci(-)uu are convex  (YecRI*? uelRY),

sym )

¢(+), ¢i(+) concave
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

The semi-implicit discretisation:

uk—

k k=1, , k=2 k 1
ut—2u" " +u u
/ T T / k »~k—1 k _k
- ) + & (kTyul, ¢ wr,eX) =0,

T 5 T / k—1.
M . R, (CT ;

k
C (C‘r f‘r )—&—Eé(kT,ui?Ci,Trf_,Ei)BO,

»

k—1
T . —T
kl TTT )+g/(k7_u7—’ck1 kEk)BO,

T

a. R(C
, k1€k ekt / k k=1 _k _k
R (c T) 4 & (kT uk, ¢kt mk eky = 0.

T

It advantageously decouples the problem and keeps the variational structure.

Basic assumptions: uncomplete damage without weakening

C(-), Ci(+) continuously differentiable, uniformly positive definite,
C(-)e:e and Ci(-)u:u are convex (VeeIngXni’, ueRY),

¢(+), ¢i(+) concave

= £(t,u,-,m, €) convex.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

The semi-implicit discretisation:

uk—

k k=1, , k=2 k 1
ut—2u" " +u u
/ T T / k »~k—1 k _k
- ) + & (kTyul, ¢ wr,eX) =0,

T 5 T / k—1.
M . R, (CT ;

k
C (C‘r f‘r )—&—Eé(kT,ui?Ci,Trf_,Ei)BO,

»

k—1
T . —T
kl TTT )+g/(k7_u7—’ck1 kEk)BO,

T

a. R(C
, k1€k ekt / k k=1 _k _k
R (c T) 4 & (kT uk, ¢kt mk eky = 0.

T

It advantageously decouples the problem and keeps the variational structure.

Basic assumptions: uncomplete damage without weakening (but can be relaxed)

C(-), Ci(+) continuously differentiable, uniformly positive definite,
C(-)e:e and Ci(-)uu are convex  (YecRI*? uelRY),

sym )

¢(+), ¢i(+) concave

itek (SpoMech seminar, Ostrava, May 10, 2012)  Rupture of lithospheric faults with earthquakes



Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Variational structure: to solve successively
two decoupled convex minimization problems at each time level:

k=1, , k-2
. u—2u""+u
minimize TzM(%)
-
k—1 k—1 k—1
ko1 U—Uf T e—€ef
+TR<CT ’ 707 T 9

+& (kT u, ¢ 7Tr, €)

subject to v € HY(Q\l¢; RY),
7 = (m,m) € H{(Q\lo; RGSY) x HY(To; R,

dev

e = (e,8) € LA(QR) x L2(T; RTY),

and, denoting its (unique) solution by uX, &, and X, further solve:

k-1
minimize TR(O; 0, &, 0, O) + E(kT7 uﬁ, ¢, Tl'f_, si)
T
subject to ¢ = (¢, () € WE(Q\le) x WLi(Tg),

whose solution will be denoted by Cf.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

The discrete energy (im)balance:

Test by u fuk L gk_mk=1 and e —e7

Convexity of £(t,-, ¢, -, ), 1-homogeneity of R((; u, é’,  E),
2-homogeneity of R(¢; -, ¢, 7, ) =

k— 1

k k—1 k—1 k k—1 k__ k=1
M(i" e >+7R(Ck 10,0, miomy o)+2r7z(¢k 1, Un—lr g g Er—Cr )
T T T

T

k—1_ k=2

+ (ke o, 617 ) < M) + £k 07 67w 7).

Test the flow-rule by ¢¥—¢%™1: convexity of £(t, u, -, 7, &) and R((; i, -, 7, €)
=

k—1
(0:R(0:0,=57—,0,0),¢~¢51) + & (kr,uk, b, wh, k) < £ (kT uk, 5wk, ).

By summing them and by the cancellation of +&(kT, uT,Ck ! wk ek) =

M(i-(8)) + E(t, ur (1), € (2), 7~ (1), f(t))+/ot5(§7( )i i (t ) Cr(8), 7 (8), €4 (1)) dt

< M(w) + E(t, uo, g, 0, €0) + S t, uT7C T, E T)dt
forall t =kr, k=1,...,T/7.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

The power:

&t u, ¢, m,€) = / C(¢)(e(u+up(t))—m—e):e(in(t)) + Do(C)e(u):e( iin(t))

Nrlg

—g'ifD(t).udx—/F(Do(g)e(z;D(t))+@(<)e(uD(t)))y-uds.

N
Assumption: up € W2L(I1; HY{(Q; R?)) N W3L(I; L2(; RY))

= by Holder's + discrete Gronwall’s inequalities:

A-priori estimates:

||UTHH1(I;H1(Q\FC;1R"))0Wl"x’(/;LQ(Q?]Rd)) =

HCTHLW(I;Hl(Q\FC)XHl(rc)) N (WL (1WLr(Q))x Wi (1 Whh (Tg))) = C’

¢,

||7"T || Loo (1HY(Q\T o IRE X 9) x HL(M o IRA-1) MWL (1L (QIREX ) x L1 (T IRA— 1)) =

B dev
||ET HHl(/;L2(Q;1Rde’)xLQ(Fc:le’l)) = ¢
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Using again the minimization problem for (uX, X ek) and
compare its value with a value at (uX, 7, k) with a general 7 and
using the 1-homogeneity of R((; 4,0, -,€) and thus

the corresponding triangle inequality,

we got the so-called discrete semi-stability:

En (8,8 (£), () (), 21 (6)) < & (1,8:(8),C,(0), 7,2 (1))
+R(C_(1);0,0,7—7,(t),0)

for all t€[0, T] and all 7 € HY(Q\lc; RIX9)x HY(T; RITY).
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Proof of convergence towards weak/energetic solutions:

Step 1: selection of subsequences (Banach's + Helly's selection principles):

Uy = u weakly* in HX(I; H}(Q\l; R?)) N Who°(T; (L2(2; RY)),
¢, —¢ weakly in W (1; WHT(Q)) x WEi(I; Whi(I)),
T, weakly* in L(/; HY(Q\le; RIX)x HY(Te; RO7Y)),

7. (t) = w(t) weakly* in H}(Q\lo; RIX)xHY (T; RITY) vt el,
e, € weakly in HY(/; L2(Q; R¥*?) x L?(Te; RI7Y)),

E.(t) »e(t)  weakly in L2(Q;RGX)x L2(Tg; RITH) vt el.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 2: Improved convergence of elastic stresses:

C(QT)(G(DT+LTD)_7?T—5_ ) — C(¢)(e(u+up)—m—e) in LP(I; L2(Q; IRI*9)),
Ci(¢, )([ar] - T(Fir+&ir)) = CiG)([w] =T(mit+ei)) in LP(I; [2(Te; RY)),

forany 1 < p < o0.

Assume ID(-), Do(+), and D;(-) are constant and r > 3 and r, > 2 (if
d=3)orr>2and > 1 (ifd =2).

Monotonicity of the C-terms between (4., 7 ,,&,) and (u,, €).

Use the discrete equations/inequality tested respectively by u,—u, by
7.—m, and by €, —¢:
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

C(¢, )(e(tr —u)—Tr+m—Er+e):(e(tr—u)—Tr+m—Er+e) + k| V7, —Vr|? dxdt
+ / ((Ci(gi,q—)( ":D-,——u}] —T(ﬁ'if—‘rﬁi—fiq—ﬂ-si)) -(”:UT—U]] —T(?Tl'i-,—-i-ﬂ'i—fiq——‘rai))
o
e m\vsﬁiT—vsm|2>d5dt
= / <Doe(f17):e(u—DT) +Dér:(e—&r) + a(gT)f_T:(fr—FrT) = Q[L}T}i_nt'([lf—[l)

QA\X¢

= C(¢ Ne(tr—u)—rr+m—Er+e):(e(u)—m—¢) — kV (- —7): V7

T -

— (¢ ) e(a—u)— 7‘r7+7r—57+5):e(u7—D7)) iy — /0 (A a—rer
+ /):C(Dié‘iri(&i—fir) + ai(giy_r)fi,r'(ﬂ'i_ﬁ'i-r) — i Vg (Tir —)- Vg i

- Gi(¢ ([[UT u] =T(Fir+mi—Eirtei))- ([u] —T(mi+ei))

= Ci(¢, ) ([Br—u] —T(Fir+-mi—Eir+e1) )-[[u—uT]]) dSdt — 0

with some &, € 86}2(7'1'7) and &, € 905, (ir).
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

we use

Iimsup/ Doe([lT):e(u—UT)dxdtS/ Doe(up):e(up) dx
=0 JQ\X¢ Q\l'c

— liminf /Q\rcDoe(uT(T)):e(uT(T))dx+ lim /Q\ZC]D)Oe(L'JT):e(u) dxdt

7—0 7—0

< /Q\rcDoe(uo):e(uo) — Doe(u(T)):e(u(T))dx + /Q\ZC}D)Oe(fJ):e(u) dxdt =0

where we used u-(T) — u(T) weakly in H1(Q\l; IRY) and
i, — 0 weakly in L2(/; HY(Q\Ic; IR9));

here we also used the assumption Dy independent of (.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Further,

Iimsup/DéT:(e—éT)dxdtg/Dso:eodx
Q Q

T—0

T—0

—Iiminf/ De,(T):e,(T)dx + Iim/DéT:dedt
Q\rc 7—0 Q
§/Dsozao—Ds(T):s(T)dx+/Dé:edxdt:O

Q Q

where we used &, (T) — (T) weakly in L2(Q;1RY) and
é, — & weakly in L2(Q;R?));
here we used the assumption D independent of (.
By analogous arguments, also f):c Diéir:(e;—¢&;r) dSdt — 0.

Moreover, we use the (generalized) Aubin-Lions’ theorem which yields
7, — 7 strongly in L2(Q; IRdXd) so that

dev
/ a(g_r)g-,—i(ﬂ'—ﬁ}) dxdt — 0
Q

because (¢ )&, is bounded in L®°(Q;IR3XY).

S>r dev
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Further,

Iimsup/DéT:(e—éT)dxdtg/Dso:eodx
Q Q

T—0

T—0

—Iiminf/ De,(T):e,(T)dx + Iim/DéT:dedt
Q\rc 7—0 Q
§/Dsozao—Ds(T):s(T)dx+/Dé:edxdt:O

Q Q

where we used &, (T) — (T) weakly in L2(Q;1RY) and
é, — & weakly in L2(Q;R?));
here we used the assumption D independent of (.
By analogous arguments, also f):c Diéir:(e;—¢&;r) dSdt — 0.

Moreover, we use the (generalized) Aubin-Lions’ theorem which yields
7, — 7 strongly in L2(Q; IRdXd) so that

dev
/ a(g_r)g-,—i(ﬂ'—ﬁ}) dxdt — 0
Q

because (¢ )&, is bounded in L®°(Q;IR3XY).

S>r dev
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Further,

Iimsup/DéT:(e—éT)dxdtg/Dso:eodx
Q Q

T—0

T—0

—Iiminf/ De,(T):e,(T)dx + Iim/DéT:dedt
Q\rc 7—0 Q
§/Dsozao—Ds(T):s(T)dx+/Dé:edxdt:O

Q Q

where we used &, (T) — (T) weakly in L2(Q;1RY) and
é, — & weakly in L2(Q;R?));
here we used the assumption D independent of (.
By analogous arguments, also f):c Diéir:(e;—¢&;r) dSdt — 0.

Moreover, we use the (generalized) Aubin-Lions’ theorem which yields
7, — 7 strongly in L2(Q; IRdXd) so that

dev
/ a(g_r)g-,—i(ﬂ'—ﬁ}) dxdt — 0
Q

because (¢ )&, is bounded in L®°(Q;IR3XY).

S>r dev
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Further,

Iimsup/DéT:(e—éT)dxdtg/Dso:eodx
Q Q

T—0

—Iiminf/ De,(T):e,(T)dx + lim / Dé, e dxdt
Q\rc T7—0 Q

7—0
§/Dsozao—Ds(T):e(T)dx+/Dé:edxdt:O
Q Q

where we used &, (T) — (T) weakly in L2(Q;1RY) and
é, — & weakly in L2(Q;R?));
here we used the assumption D independent of (.
By analogous arguments, also f):c Diéir:(e;—¢&;r) dSdt — 0.

Moreover, we use the (generalized) Aubin-Lions’ theorem which yields
7, — 7 strongly in L2(Q; IRdXd) so that

dev
/ a(g_r)g-,—i(ﬂ'—ﬁ}) dxdt — 0
Q

because (¢ )&, is bounded in L®°(Q;IR3XY). Nhere V7 needed!

S>r dev
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 3: Limit passage to the momentum IBVP:

The Aubin-Lions’ theorem, ¢ — ¢ strongly
also ST — (¢ strongly

and thus also C(¢ ) — C(¢) and Ci(¢, ) — Ci((;) strongly in the

= 21,

corresponding LP-spaces, p < oo.

Then the convergence in the discrete momentum IBVP easy.

itek (SpoMech seminar, Ostrava, May 10, 2012)  Rupture of lithospheric faults with earthquakes



Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Original flow rule for bulk damage (:

08(C )~ (¢ ) > —5C(¢ N(elw )=m —¢ ):(e(w )= —¢ )
+div(roV¢. +m|VE 772V ),
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

88(C) — ¢(Gr) 3 —5C/(C) (el@r) 7o) (e(@)~7,—27)
+ div (HOVET + lillvé‘rrizv&‘r)a
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

88(C) — ¢(Gr) 3 —5C/(C) (el@r) 7o) (e(@)~7,—27)
+ div (HOVET + lillvé‘rrizv&‘r)a

Discrete flow rule as a variational inequality:

B(0) + 5C(C) (@) ~Tr—&:): (@) ~Tr—87) ((~Cr) — (G (T~r)
Q\X¢c
+RoVEV(C=Cr) + Ve dede > [ 56+ 2TE ] drde

r Q\ZC r

holds for all ze Lo(1; WHH(Q\IR)).
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

88(C) — ¢(Gr) 3 —5C/(C) (el@r) 7o) (e(@)~7,—27)
+ div (HOVET + lillvé‘rrizv&‘r)a

Discrete flow rule as a variational inequality:

B(0) + 5C(C) (@) ~Tr—&:): (@) ~Tr—87) ((~Cr) — (G (T~r)
@\Zc
+RoVEV(C=Cr) + Ve dede > [ 56+ 2TE ] drde
r A\Ic r
holds for all ¢ € L°°(/; WL (Q\l)).
Like in Step 3, C'(¢_) — C(¢;) and /() — /() strongly in LP, p < 0.

2T 2T
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

. _ 1 -
OF(¢r) —d(¢r) —EC/(CT)(G(DT)—TTT—F}):(e(DT)—TrT—e_T)
+div(koVE, + 1 |VEAT2VEL),
Discrete flow rule as a variational inequality:
e SO ST (e(8) =) (e(8)~7r—5) () — (G (~C)
+ novg‘T.v(Z—g';) \VC| dxdt > / 3( (T s |VC.T|’dxdt
holds for aII Ce L°°(I Whr(Q\le)).
Like in Step 3, C'(¢ ) — C(¢r) and ¢/(¢ ) — ¢/(C) strongly in LP, p < oc.

S

Using Step 2, C'(C, ) (e(@y)—7, —&,):(e(Tr)—7r—&,) (C—Cr) — in L7(LY()).
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

88(C) — ¢(Gr) 3 —5C/(C) (el@r) 7o) (e(@)~7,—27)
+ div (HOVET + lillvé‘rrizv&‘r)a

Discrete flow rule as a variational inequality:

B(0) + 5C(C) (@) ~Tr—&:): (@) ~Tr—87) ((~Cr) — (G (T~r)
QA\Z¢
+RoVEV(C=Cr) + Ve dede > [ 56+ 2TE ] drde
r Q\ZC _ r
holds for all ¢ € L°°(/; WL (Q\l)).
Like in Step 3, C'(¢ ) = C(¢r) and ¢/(¢ ) — ¢(C) strongly in LP, p < cc.
Using Step 2, C'(C, ) (e(@y)—7, —&,):(e(Tr)—7r—&,) (C—Cr) — in L7(LY()).
We need (and use) ¢, — ¢ weakly* in L7(/; L°())
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

F(¢,) —d(Cr) 2 f%(C'(C_T)(e(DT)—TrT—éT):(e(UT)—TTT—ET)
+div(roVCr + 51| Ve 772V,

Discrete flow rule as a variational inequality:
~ 1 - - . U
/ S(C) + EC/(CT)(e(DT)_TTT_E_T):(e(L_lT)_ﬁ-T_éT) (C_C‘r) - CI(CT)(C_CT)
QA\X¢

+ koVE -V (C=C,) + 21VE dxdt > / F(Cr) + 2|V, | dxdt
r A\Tc r
holds for all ¢ € L(1; WA (Q\le)).
Like in Step 3, C'(¢ ) = C(¢-) and ¢/(¢ ) — ¢/(C) strongly in LP, p < cc.
Using Step 2, C'(C, ) (e(@r)—7-—&,): (e(Tr)—7r =&, ) (C=Cr) — in L7(LX()).
We need (and use) (r — ¢ weakly* in Lr(1; L>(R2))
N the term div(/{1|VC'\’*2Vé) needed!
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

. _ 1
5(¢-) —(¢r) > _E(C/(CT)(e(DT)_ﬁT_&:T):(e(BT)_;TT—gT)
+div(5oVEr + 51|V T2VES),
Discrete flow rule as a variational inequality:
~ 1 - ~ . U
/ S(C) + E(C/(CT)(e(DT)_ﬁ-T_E_T):(e([lT)_ﬁT_gT) (C_CT) - c/(CT)(C_CT)
Q\X¢c
4oV V(C=C) + 2VE drde > [5G+ 2IVE 1 axde
r A\Ic r
holds for all ¢ € L*°(/; WL (Q\lG)).
Like in Step 3, C'(¢ ) = C(¢r) and ¢/(¢ ) — ¢/(¢) strongly in LP, p < occ.
Using Step 2, C'(C, ) (e(@iy)—7, —&,):(e(Tr)—7r—&,) (C=Cr) — in L7(LY()).
We need (and use) ¢, — ¢ weakly* in L7(/; L°())
The resting terms by weak lower semicontinuity (+by part integration).
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 4: Limit passage to the flow rules for (:
Discrete flow rule for bulk damage (:

. _ 1 -
IF(¢) —d(¢r) —E(C’(CT)(e(DT)—TTT—fET):(e(UT)—frT—éT)
+ div(koVEr + m|VEL | 2VE,),
Discrete flow rule as a variational inequality:
~ 1 = T o~
/ S(C) + E(C/(CT)(e(DT)_ﬁ-T_gT):(e([lT)_ﬁ-T_gT) (C_C‘r) - CI(CT)(C_CT)
Q\Z¢c
+ koVE -V (C=Cr) + 21VE dxdt > / F(Cr) + Ve, | dxde
r A\Ic r
holds for all ¢ € L°°(/; WL (Q\lG)).
Like in Step 3, C'(¢ ) = C(¢r) and ¢/(¢ ) — ¢/(¢) strongly in LP, p < occ.
Using Step 2, C'(C, ) (e(@iy)—7, —&,):(e(Tr)—7r—&,) (C—Cr) — in L7(LY(R)).
We need (and use) ¢y — ¢ weakly* in L7(1; L>=(R))

Analogously for the flow rule for the interface damage ;.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 5: Limit passage in the energy (im)balance:

From the discrete variant (already displayed):

M(a-(t)) + E(t, Uf(f)7CT(t)»ﬂr(t)a€r(t))+/0 =(¢ (t): ar(2), o (), o (2), €4 (1)) dt
< M(w) + &(t, uo, g, 0, €0) +/ &l t,gT,gT,gT,gT) dt.

fort=kr, k=1,.... T/,

by the weak lower semicontinuity,

M(u(t)) + &(t, U(f)»C(t),ﬂ(f)»E(t))+/0tE(C(f):ﬂ(f),é(t)vﬁ(f),é(t))df

SM(VO)+g(t7 anC077707€0)+/5l{(t7 U,C,Tl',E)dt
0

holds for all t € [0, T].
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 6: Limit passage in the semistability:
From the discrete variant (already displayed): Vt, V:

E-(8,8(1), (), 7 (8). 8 (1)) < & (,5-(1), &, (2), 7,E1(2)
+R(¢_(t):0,0,7—7(t),0)

for = (7,7 (t)) :
0< [ 3CC () (6(E (e +01) 72 (£))3(e(n (60, (1)) 72 1)
Qe

— %(C(QT(t))(e(DT(t)—i—DD,T(t))—ﬁT(t)—e‘T(t)):(e(DT(t)—i-BD’T(t))—TrT(t)—s‘T(t))

+ VAP = ZIVE(1) + a(C (0)55(Fr (1)) dx |
- [l D) efan )30, 1) 2 (0): (7= (0) + ¢, (0

C

- %C(QT(t))ﬁr(t)ffr(t) + gIV%I2 SIVE(E) + a(C, ()0p(Fr—Tr(t)) dx.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 6: Limit passage in the semistability:
From the discrete variant (already displayed): Vt, V:

E-(8,8(1), (), 7 (8). 8 (1)) < & (,5-(1), &, (2), 7,E1(2)
+R(¢_(t):0,0,7—7(t),0)

for = (7,7 (t)) :
0< [ 3CC () (6(E (e +01) 72 (£))3(e(n (60, (1)) 72 1)
Qe

— %(C(QT(t))(e(DT(t)—i—DD,T(t))—ﬁT(t)—e‘T(t)):(e(DT(t)—i-BD’T(t))—TrT(t)—s‘T(t))

+ VAP = ZIVE(1) + a(C (0)55(Fr (1)) dx |
- [l D) efan )30, 1) 2 (0): (7= (0) + ¢, (0

C

- %C(QT(t))ﬁr(t)ffr(t) + gIV%I2 SIVE(E) + a(C, ()0p(Fr—Tr(t)) dx.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 6: Limit passage in the semistability:
From the discrete variant (already displayed): Vt, Vr:

& (£:r(6), €, (6), 7o (1), B (1)) < & (£:,T0(8). . (0), 7,1 (1)
+R(¢_(t):0,0,7—7,(t),0)

for = (7, 7i-(t)) :
1 o o _
0< / 2C(C () (e(@r 1)+ ) —T— (1)) : (e(@r (£)+Tip £ (£)) ~7 . (1))
Q\rc2
_ %C(QT(t))(e(DT(t)+DD,T(t))—ﬁT(t)—a‘T(t)):(e(UT(t)+UD,T(t))—7‘rT(t)—s‘T(t))

+ VAP = ZIVE(0) + a(C ()55 (F (1)) dx |
= [ S e 0. £ 0): (1)) + 2L ()7

SC(C (DR ()7 () + ZIVAP = ZIVA-(0) + (¢, (£)55(Fr—T (1)) dx.

Then weak upper semicontinuity leads to the limit.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 6: Limit passage in the semistability:
From the discrete variant (already displayed): Vt, Var:

& (£:r(6), €, (6), (1), B (1)) < & (£:T0(8), o (8), 7,1 (1)
+R(¢_(t):0,0,7—7(t),0)

for = (7,7 (t)) :
0 §/ %(C(QT(t))(e(DT(t)—&—DD’T)—%—e—T(t)):(e(EIT(t)—i-DD,T(t))—7~r—5¢(t))
A\l

— %(C(QT(t))(e(DT(t)—i—DDyT(t))—ﬁT(t)—e‘T(t)):(e(DT(t)+BD’T(t))—7‘rT(t)—s‘T(t))

+ IV = SV + (g, ()05~ (1) dx
_ jQ\F(C(CT(t))(e( B (8)H80,7) & (1) (F-7-(8)) + 5C(C, (D)7

C

SC(C (DR (2)7r () + ZIVAP = ZIVA-(0) + (¢, (£)55(Fr—T (1)) dx.

Analogously, 7 = (7,(t),7;) leads to the interfatial semistability.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Step 7: Limit passage in the Maxwellien dynamics:

The discrete equation

involves semilinear equations

D(¢,)é = C(¢, ) (e(@r) -7, ;)

T

and

D; (<.

1, T

)é = Cil¢, ) ([3:] T +50)),

which bears easily the limit passage.
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Semi-implicit time discretization
Analysis A-priori estimates

Convergence towards weak solutions

Comments:

@ Rate independent flow rule for 7t and theory of rate-independent
processes, in particular the “energetic-solution” concept, used for
the definition of the weak solution; i.e. combination of energy
inequalitity and (semi)stability.

@ As > E(t,u,{,m, €) is convex, no too-early-jump effects.

@ Rate dependent flow rule for 7 would also be possible. Then 7 € L?
and conventional weak formulation works (again, strong
convergence of stresses and thus gradient of 7 needed).
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Computational experiments with 1-DOF slider

Computational experiments:

we neglect: all inertial /inelastic/viscous effects in the bulk,
the Maxwellian rheology both in the bulk and on the fault,
thus wesete =0, 7 =0, ( =0, and g = 0.

The ansatz: e(u) is constant on each particular subdomain, here ©; and Q,
thus, in particular, ulg, and u|q, are affine,
m; and (; are constant along [¢.

Symmetric geometry:

2u Ip ¥
| |
Q Upir = U'Dir(t)
1
h/2
- v _____ : ; _
o hy2
upir = —upir(t)
[ | ¥
I

Fig. 3 A single-degree-of-freedom slider, having 1 d-o-f observable pa-
rameter u (other 2 d-o-f are in internal parameters m; and ).
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Computational experiments with 1-DOF slider

Data (academical, dimensionless):

P =[-1,1],
a;(¢;) = aig + a31¢; =damage activation threshold
with aj; = 1, ajp = 107* (€ [0, ..., 1073] works equally),
¢i(¢;) := co¢; =stored energy in interface damage (~fracture toughness)
with ¢o varying (= 3.107%, 9.107%, and 27.10~%)
and here with constraints 0 < ¢, <1,
Ci(¢,) := Cig + Ci1¢; =interfatial elastic modulus (C;g = 0.1, C;; = 1),
b; = 0.1 (prescibing rate of damage),
a; =20  (prescibing healing rate c¢g/a; for stress-free state),
9;=0 (no “dead” zone, only either healing or damaging),
linearly increasing prescribed horizontal shift up;(t) = 10~%t
with t€[0, T], T = 8.107,
hC = 10~* (if not considered varying),

bulk stored energy: ThClu—up;, () [?
interfacial stored energy: 1C;(¢;)|u—mi|* — «i(¢)
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interface plasticity interface plastieity m, interface plasticity T,
LiTs
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107 m .
Calculatlons and visualization: courtesy "of Roman VOdICk (T.U. Kosice).
Ficure 4. Oscillatory response of ;. 5, and £ In time on the linearly increasing
load wup;, displayed for three different values of ¢, namely (from left to to right)

6 = 31077, 9.107, and 27.10-%
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Computational experiments with 1-DOF slider

250 T 250 . 250 T
200 200 200
150 150 150
100 100 100
50 50 — 50

/
0 L 0 L 0 L
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
x107 x107 x107

FIGURE 5. The energies on the left- and the right-hand sides in the energy bal-
ance as functions of time for the three values of ¢; used also in Fig. 4; the dif-
ference has been used for the refinement/corsening of time step 7 during earth-
quakes/healing periods, respectively.

Multiscale problem in time: time-step variation needed.
We varied 7 to keep the error in energy balance uniformly small:

Calculations and visualization: courtesy of Roman Voditka (T.U. Kosice).
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Computational experiments with 1-DOF slider

Right colomn of Fig.4 one again:

6000

4000

2000

interface plasticity m; interface damage ¢; stored energy &
1 30
0.8
J_I 0.6 20
: / L
J_I 0.4 10
0.2
I_ 0 0
2 4 6 8 2 4 6 8 0 2 4 6 8
%107 x107 %107
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Computational experiments with 1-DOF slider

Right colomn of Fig.4 one again:

interface plasticity m; interface damage ¢; stored energy &
6000
1 30
4000 0.8
J_‘ 0.6 20
: LT
2000 0.4 10
0.2
0 I_ 0 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
%107 x107 %107

and its detail for one the particular (=4'1") jump:

interface plasticity m; interface damage ¢; stored energy &£

3500

poo—o—io 1 ¢ 30
0.8 / q

3000

0.6 /‘
2500 0.4 3 1
0.2 ix
2000 0 lv[ 0 Lo
4.644.641  4.643  4.645 4.644.641  4.643  4.645 4.644.641  4.643  4.645
x 107 x 107 x107

FI1GURE 6. Time-zoom of ¢;, m;, and & during one particular “earthquake” from Fig. 4(right).
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Computational experiments with 1-DOF slider

lllustration of convergence: tolerance per time step = 102, 103, 104, 1073;

000 |-
2000 |-
i} 1
0 1
1 T T
05 =
E I | | I I I i
0 1 2 3 4 5 [ 7 [
x 10
AeE
- I T Il -
20 al
m -
5 i | i |
] 1 2 3 ) 5 [ B 8
%10
Etalnge
amf-
150
100
50l
0

%10

Calculations and visualization: courtesy of Roman Voditka (T.U. Kosice).

Tomas Roubitek inar, Ostrava, May 10, 2012)  Rupture of lithospheric faults with earthquakes



Computational experiments with 1-DOF slider

Illustration of convergence: tolerance per time

step = 1072, 103, 1074, 10~>:

RelE

4

Ebalance

E}

r, Ostrava, May 10, 2012)
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Computational experiments with 1-DOF slider

lllustration of convergence: tolerance per time step = 1072, 103, 10—%, 1073;

000 |-
2000 |-
i} 1
0 1
f T T
05 =
E I | | I I I i
0 1 2 3 4 5 [ 7 [
x 10
AeE
sk T T T |
20 |
m -
5 i | i I i i |
] 1 2 3 ) 5 [ 7 8
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180
1m0 -
50l
0

%10

Calculations and visualization: courtesy of Roman Voditka (T.U. Kosice).
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Computational experiments with 1-DOF slider

lllustration of convergence: tolerance per time step = 1072, 103, 104, 10—>:

4000 —
2000 —
5 I
o 1
4 T T
06 —
5 I i I i i I i
o 1 2 3 4 5 8 7 a8
x 107
RelE
# ] T T -
20— gt
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%10

Calculations and visualization: courtesy of Roman Voditka (T.U. Kosice).
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FIGURE 7. Variation of stored energy versus periods between particular earth-
quakes depicted in logarithmic scale:

Left: the activation energy ¢ (=fault fracture toughness) varies as 3*.10~* for
i =0,...,4; the slope is close to 2.

Right: the plate height A varies: hC = 2¢.107° for i = 0, ..., 5; the slope is ~ 1.
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FIGURE 7. Variation of stored energy versus periods between particular earth-
quakes depicted in logarithmic scale:

Left: the activation energy ¢; (=fault fracture toughness) varies as 3107 for
i =0,...,4; the slope is close to 2.

Right: the plate height A varies: hC = 2¢.107% for i = 0, ..., 5; the slope is ~ 1.

EARTHQUAKE MAGNITUDE, INTENSITY, ENERGY,
AND ACCELERATION

(Second Paper)

By B. GureEneErG anD C. F. RicHETER

ABSTRACT
This supersedes Paper 1 (Gutenberg and Richter, 1942), Additional data are presented. Revisions
involving infensity and acceleration are minor. The equation log a = /3 — 14 is retained. The
magnitude-energy relation is revised as follows:
log £ = 9.4 +2.14 M — 0.054 M? (20)
In: Bull. Seismol Soc. Amer. 46 (1956) 105-145.

Paper 1: Bull. Seismol. Soc. Amer. 32 (1942) 163-191.
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FIGURE 7. Variation of stored energy versus periods between particular earth-
quakes depicted in logarithmic scale:

Left: the activation energy ¢; (=fault fracture toughness) varies as 3'.10~* for
i =0,...,4; the slope is close to 2.

Right: the plate height A varies: hC = 2¢.107° for i = 0, ..., 5; the slope is ~ 1.

“More seismic” interpretation:
paralel arrangement of many 1-DOF sliders with uniformly distributed ¢;

= magnitude-M earthquake occurence frequency ~ 1/M,
amplitude ~ M,
energy released ~ M2
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FIGURE 7. Variation of stored energy versus periods between particular earth-
quakes depicted in logarithmic scale:

Left: the activation energy ¢; (=fault fracture toughness) varies as 3'.107* for
i =0,...,4; the slope is close to 2.

Right: the plate height A varies: hC = 2¢.1076 for i = 0, ..., 5; the slope is ~ 1.

“More seismic” interpretation:
paralel arrangement of many 1-DOF sliders with uniformly distributed ¢;

= magnitude-M earthquake occurence frequency ~ 1/M,

amplitude ~ M,
energy released ~ M2
Very roughly speaking: 1 Richter ~ 2 Bell
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Computational experiments with 1-DOF slider

Thanks a lot for your attention.
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