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Lines of inquiry

Where does our information on the internal structure of the Earth
and terrestrial planets come from ?

Geophysics:

I Seismology

I Electromagnetic sounding

I Gravity

Geochemistry:

I Geochemical and petrological analyses of terrestrial rocks and
meteorites.

Geodynamics:

I Numerical modeling of mantle flow.



Seismology and Earth’s mantle structure

Figure: Seismic wave propagation in the Earth, global distribution of
seismometers and seismicity.

Figure: Seismogram from a station.



Seismic tomography and Earth’s mantle structure

Seismic tomography has provided spectacular images of the
large-scale structure of the Earth’s interior, which in turn offers
clues about mantle chemistry and thermal state,

Figure: 3D tomographic structure of the mantle close to subduction
zones in the Pacific and central America. From Karason & Van der Hilst
(2000).



Seismic tomography and Earth’s mantle structure

and has changed our perception of mantle dynamics

Figure: Two end-member scenarios for the present-day constitution of
the Earth’s mantle. (A) layered mantle convection. (B) whole mantle
convection. From Tackley (2000).



Limitations with current approaches and a step beyond

The problem is compounded by the fact that physical properties
are not an end in themselves

Vs(r), Vp(r) ←− dseismic

ρ(r) ←− dgravity

σ(r) ←− dem

We need to look deeper for a set of parameters that describe rock
properties at a more fundamental level

Vs(r), Vp(r) ←− dseismic

↙
? ← ρ(r) ←− dgravity

↖
σ(r) ←− dem
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A novel approach

The underlying fundamental parameters are composition (c) and
temperature (T ):

Vs(r), Vp(r) ←− dseismic

↙
c(r), T (r) ← ρ(r) ←− dgravity

↖
σ(r) ←− dem

A more definitive approach would have us test geophysical data
directly for composition and temperature !



Thermodynamic modeling

Is it possible to compute physical properties directly for a given
chemical composition (c), pressure (P ) and temperature (T ) ?

Yes, this can be achieved through the use of thermodynamic
methods based on Gibbs free energy minimisation (e.g. Perple X,
Connolly, 2005):

c Vs, Vp
g1
↘

g2
↗

M
g2→ ρ

g1
↗

g3
↘

T σ

where c is NCFMAS composition, comprising the oxides of the
elements Na2O-CaO-FeO-MgO-Al2O3-SiO2.
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Thermodynamic Modeling - Equation of state

• Gruneisen model for Helmholtz energy:

A(V, T ) = A0 −Ac(V, T0) + [Ath(V, T )−Ath(V, T0)]

• Birch-Murnaghan ”cold” part:

Ac =
9

2
K0V0[f2 + (K0 − 4)f3], f =

1

2

[(
V0
V

)2/3

− 1

]

• Debye ”thermal” part: Ath = 9nRT T
θ3

∫ θ/T
0

ln[1− exp(−t)]t2dt,

θ = θ0 exp

γ0[1−
(
V
V0

)q
]

q


Model contains 10 species-specific parameters: A0, V0,K0,K

′

0,

θ0, γ0, q0, G0, G
′

0, ηS0. EoS (Stixrude & Bukowinski, 1990; Stixrude &

Lithgow-Bertelloni, 2005a,b) and thermodynamic data from Xu et al.

(2008).



Thermodynamic Modeling - Physical Properties

Density

ρ = N

(
∂G

∂P

)−1

Bulk modulus

KS = −∂G
∂P

[
∂2G

∂P 2
+

(
∂
∂P

∂G
∂T

)2
∂2G
∂T 2

]−1

Shear modulus is obtained from finite strain model EoS of Stixrude
& Lithgow-Bertelloni (2005a,b)

µS = f [G(ρ, T )]

Phase relations are most sensitive to integration constants and
low-order derivatives, whereas seismic velocities are most sensitive
to higher-order derivatives.



Thermodynamic modeling - phase equilibria and physical
properties

c, T
g1−→M

g2−→ VP , VS , ρ

Figure: Phase equilibria and physical properties (S-wave velocities, solid
line) for three different mantle compositions along a mantle adiabat
(dashed line).



Putting it all together

Now, that we can compute physical properties for a given c, T (&
P )

c, T
Perple X−→ VP , VS , ρ

it straightforward to define a quantitative approach to inferring
composition and temperature from geophysical data

dseismic

↙
c, T ← dgravity

↖
dem
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Putting it all together

Now, that we can compute physical properties for a given c, T (&
P )

c, T
Perple X−→ VP , VS , ρ

it straightforward to define a quantitative approach to inferring
composition and temperature from geophysical data as well as
incorporating data/information from other fields of the geosciences

dheat flow dgeochemistry dseismic

↘ ↓ ↙
dgeodynamics → c, T ← dgravity

↗ ↑ ↖
dmineralogy dpetrology dem



Bayesian inversion of surface-wave phase-velocities:
Application to the thermochemical and physical structure
beneath North America



Parameterization I

Figure: Parameterization of the model. Dots at the center of each pixel
denote the locations at which properties are defined laterally. Grid
spacing is 5◦. Radially the model is parameterized in terms of layers.



Parameterization II

At each geographical location the model is
divided into crust and mantle layers, which
are parameterized further using the
following parameters

I Crust is divided into a 4-layer model of
Vp, Vs, ρ based on CRUST2.0.

I Moho thickness

I NCFMAS composition in two mantle
layers

I mantle temperature T in 30 layers.

I anisotropy parameters ξ, φ, η in 25
layers. Figure: Radial

parameterization.



Datafit

Figure: Comparison of calculated (gray lines) and observed Rayleigh and
Love-wave phase-velocities (circles), including uncertainties (error bars)
at two different locations, which are shown in figure 1 (a,b - filled square
and c,d - filled circle)



Summary of forward model

A schematic illustration of the forward problem showing connection
between model parameters and data via physical theory:

{ξ, φ, η}
g3
↘

{c, T}
g1−→ {M}

g2−→ {Vp, Vs, ρ}
g3−→ {Vpv, Vph, Vsv, Vsh, ρ, η}

g4−→ {CR, CL}
g3
↗

{Q}

where

I c, T, ξ, φ, . . . are model parameters,

I g1, g2,. . . denote physical theories, and

I CR, CL data.



Anisotropy

An anisotropic elastic medium in the general case is defined by 21
independent elements of the 4th order elastic tensor, whereas an
isotropic solid is described by only two. In the case of transverse
anisotropy (symmetry axis in vertical direction), the number of
independent unknowns reduces to 5. These could be either

A = ρV 2
ph, C = ρV 2

pv, L = ρV 2
sv, N = ρV 2

sh, F =
η

A− 2L
.

(Love, 1927), or reparameterize the above coefficients using the
Voigt average of the isotropic P and S wave velocities (Babuska &
Cara, 1991)

V 2
s =

2V 2
sv + V 2

sh

3
, V 2

p =
V 2
pv + 4V 2

sh

5
,

in addition to the following three anisotropy parameters

ξ =
V 2
sh

V 2
sv

, φ =
V 2
pv

V 2
ph

, η =
F

A− 2L
. (1)



Attenuation and dispersion

It has been found experimentally that attenuation Q is
temperature dependent (e.g., Jackson et al., 2002)

Q = Q0 exp

(
α(E + PV )

RT

)
where α describes frequency dependence of Q (∼0.25).

A consequence of a dissipative system is the presence of velocity
dispersion due to attenuation

V (P, T,X, ω) = V (P, T,X,∞)

[
1− 2Q−1

tan(απ/2)

]



Solving the inverse problem

The discretized inverse problem can be written as

d = g(m)

However,

I we do not have a closed-form mathematical expression for
g(m),

I but instead a method(s) that allows to evaluate g(m) for a
given m:

m
g1−→m′

g2−→m′′
g3−→ . . .

gn−→ d

This is a typical characteristic of non-linear inverse problems.
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Solving the inverse problem

In the case of non-linear inverse problems the model space is
typically also multi-modal

We employ a stochastic algorithm to sample the model space
(=space of solutions).



Solving the inverse problem

The inverse problem formulated as a combination of independent
states of information:

1. prior information on m obtained independently of data
ρm(m).

2. information obtained from (uncertain) observations ρd(d).

3. the joint prior ρ(d,m) = ρd(d)ρm(m).

4. a distribution θ(d,m) describing an uncertain theory
d ≈ g(m) over the joint data/model space.

combining 1-4 using the conjunction of states of information
results in

σ(d,m) =
ρ(d,m)θ(d,m)

µ(d,m)
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Solving the inverse problem

Figure: Combination of states of information. From Tarantola (2005).

which for many applications is typically written

σm(m) = kρm(m)L(m)

L(m) = k exp [−S(m)]

S(m) =
1

2

[
(g(m)− dobs)

tC−1
D (g(m)− dobs)

]
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Sampling the posterior

Let us perform a grid search over the entire model space.



Sampling the posterior

Instead, let us try a sampling-based method such as importance
sampling (Metropolis, Gibbs).

There are several algorithms available: crude Monte Carlo (random
search), genetic algorithms, Importance sampling methods (Gibbs,
Metropolis), Neighbourhood algorithm, simulated annealing, etc.



Sampling the posterior

Importance sampling using Metropolis algorithm

• if L(mj) ≥ L(mi), accept proposed transition i→ j.
• if L(mj) < L(mi), accept proposed transition with probability

Pi→j =
L(mj)
L(mi)



Sampling the posterior

Importance sampling



Sampling the posterior

This became Albert’s preferred idea - representing probability
densities with samples from the probability distribution.

The solution is not one model but a collection of models that are
consistent with both prior information and data



Analysis of the posterior distribution

1) displaying prior and posterior models (showing movies)

Figure: 100 lunar density models from the prior (top) and posterior
(bottom) pdf . From Khan et al. (2004).



Analysis of the posterior distribution

2) calculation of resolution measures

R(Λ, f) =

∫
Λ
f(m)σ(m)dm ≈ 1

N

∑
{n|mn∈Λ}

f (mn) (2)

3) Bayesian hypothesis testing

Given two hypotheses Hi, Hj , the Bayes factor, Bij in favour of
Hi (and against Hj) is given by the posterior to prior odds ratio.

Bij(d) =
P(d|Hi)
P(d|Hj)

=
P(Hi|d)/P(Hj |d)

P(Hi)/P(Hj)
(3)
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Prior thermal movie

Figure: Figure: Prior mantle temperatures at 100, 300, 500 and 1000 km
depth. Plots A-D show marginal prior 1D pdf’s for the location indicated
by the circle on the maps.



Posterior thermal movie

Figure: Posterior mantle temperatures at 100, 300, 500 and 1000 km
depth. Plots A-D show posterior 1D pdf’s for the location indicated by
the circle on the maps (Khan et al., 2011).



Prior compositional movie

Figure: Prior mantle compositions in the upper (first panel) and lower
mantle (second panel). Plots A,B show marginal prior 1D pdf’s for the
location indicated by the circle on the maps.



Posterior compositional movie

Figure: Posterior mantle compositions in the upper (first panel) and
lower mantle (second panel). Plots A,B show marginal posterior 1D pdf’s
for the location indicated by the circle on the maps.



Prior shear-wave velocity movie

Figure: Prior isotropic shear-wave velocity movie. In each panel the six
maps represent six shear-wave velocity models that are picked randomly
from the prior distribution at depths of 100 km (1-6), 300 km (7-12), 500
km (13-18) and 1000 km (19-24), respectively (from Khan et al., 2011a).



Posterior shear-wave velocity movie

Posterior isotropic shear-wave velocity movie at depths of 100 km (1-6), 300 km (7-12), 500 km (13-18) and 1000

km (19-24). Plots A (at 100 km depth) and B (at 300 km depth) - Nettles & Dziewonski (2008), plots C (100

km), D (300 km) and E (500 km) - Yuan et al. (2010)).



Posterior shear-wave velocity profiles

Figure: Selected shear-wave velocity models beneath different tectonic
settings in the upper mantle and transition zone (A) and lower transition
zone and mantle (B) : Oceanic (a-c), young continent (d) and old stable
continent (e,f). Profiles encompass all sampled models. Geographic
location of letters are indicated in figure 1.



Posterior filtering: geoid anomalies

Additional geophysical data can be employed as a tool to refine
and narrow the collection of tomographic models.

Figure: Observed geoid GGM02 of Tapley et al. (2005) for harmonic
degrees 6-20.



Posterior density movie

Figure: Posterior density movie at depths of 100 km (1-6), 300 km
(7-12), 500 km (13-18), 1000 km (19-24).



Posterior filtering: geoid anomalies

Geoid anomalies are computed from

δN(θ, φ) =
3

4πρm

∫ R

rCMB

∫ 2π

0

∫ π/2

−π/2
Kg(∆, r)δρ(r, θ′, φ′) sin θ′dθ′dφ′dr

(4)
whereas geoid kernels, expressing the relationship between surface
observables and internal density loads that drive the flow, are given
by

Kg(∆, r) =

l2∑
l=l1

Gl(r)P
0
l (cos ∆) (5)

where P0
l (cos ∆) and Gl(r) are Legendre Polynomials and radial

geoid kernels. The latter are computed using the viscous flow
theory of Forte (2000) and thus depend on the radial viscosity
profile.



Posterior filtering: geoid anomalies

Radial viscosity profiles using η = η0 exp(−(E + PV )/RT )

Computed geoid kernels



Posterior filtering: geoid anomalies

Figure: Reconstructed geoid anomalies for the six posterior density
models using a continental average viscosity profile (plots 1-6) and
regionally averaged viscosity profiles (plots 7-12). Only harmonic degrees
6 to 20 are used. For comparison, plot A shows the observed geoid
GGM02 of Tapley et al. (2005) for the same harmonic degrees.



Prior anisotropic shear-wave velocity movie

Figure: Prior shear-wave anisotropy movie. In each panel the six maps

represent six different shear-wave anisotropy models that are picked

randomly from the prior distribution at depths of 100 km (1-6), 300 km

(7-12), 500 km (13-18) and 1000 km (19-24), respectively.



Posterior anisotropic shear-wave velocity movie

Figure: Posterior shear-wave anisotropy movie at depths of 100 km (1-6), 300 km (7-12), 500 km (13-18), 1000

km (19-24) and 1800 km (25-30). Plots A (at 100 km depth) and B (at 300 km depth) - Nettles & Dziewonski

(2008), plots C (100 km depth) and D (300 km depth) - Boschi & Ekström (2002), plots E (100 km), F (300 km)

and G (500 km) - Yuan et al. (2010) and plot (H) - Marone et al. (2007) at 100 km depth. Note differences in

colourbars.



Conclusion

I Thermal as well as compositional variations are needed in
order to fit data,

I The thermo-chemical and physical structure of the North
American upper mantle follows the surface tectonic
age-division closely,

I the old stable continental parts are cold and Fe-depleted,
while the tectonically younger continental regions and oceanic
lithosphere appear to be relatively hot and Fe-enriched,

I shear-wave velocity differences between oceans and continents
disappear around 300 km depth,

I within the transition zone a decoupling of the structure
(thermo-chemical and anisotropic) from that of the upper
mantle is accompanied by a decrease in amplitude of velocity
anomalies,

I absence of strong heterogeneities in the lower mantle, with
evidence for compositionally distinct upper and lower mantles,
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Conclusion continued

I anisotropic upper mantle structure is similar to previous
studies, where old stable continents are characterized by
positive shear-wave anisotropy, whereas younger areas are
characterized by negative shear-wave anisotropy. In the
transition zone anisotropy appears to reverse, which likely
reflects the presence of distinct anisotropic layers in the
mantle,

I testing posterior tomographic models using geoid anomalies,
which are sensitive to density, presents a promising tool for
refining the collection of sampled tomographic and
thermo-chemical models. A current limitation, however, is the
accuracy of the reconstructed geoid, which requires a good
knowledge of the mantle viscosity structure.
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Computation of electrical conductivity structure

We can measure the electrical conductivity for a set of relevant
mantle minerals in the laboratory, which is found to follow an
Arrhenius type relation.

Figure: Electrical conductivity profiles as a
function of major element composition,
water content and temperature (from
Khan et al., 2011b).

Upper mantle:
σ = σo exp(−∆H/kT )
Transition zone:
σ =
ACw exp(−[∆H − αC1/3

w ]/kT )
Lower mantle:
σ = σoT

m exp(−[E + PV ]/kT )

Bulk rock electrical conductivity: σ =
∏N
i=1 σ

xi
i



Posterior electrical conductivity movie

Figure: Posterior electrical conductivity movie at depths of 100 km (1-6),
300 km (7-12), 500 km (13-18), 1000 km (19-24).



Posterior filtering: 3D EM C-responses

3D EM response functions are computed using the
integral-equation approach of Kuvshinov & Semenov (2012).

Figure: Comparison of computed and observed 3D EM C-responses for
station TUC (North America).
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